
Technical Memorandum

Technical Memorandum

Data Validation

National Smelting of New Jersey Site

Pedricktown, New Jersey

NL Industries, Inc.

June 1990

TABLE OF CONTENTS

	PAGE
SECTION 1 - INTRODUCTION	4
1.01 Introduction 1.02 General Considerations	. 4
SECTION 2 - ANALYTICAL METHODS	6
2.01 October, 1989 2.02 December, 1989	6 8
SECTION 3 - DATA VALIDATION PROTOCOLS	9
3.01 October, 1989 3.01.1 Target Compound List Organics 3.01.2 Target Compound List Inorganics 3.01.3 Total Organic Halides (TOX) 3.01.4 Sulfate 3.01.5 Total Organic Carbon (TOC) 3.01.6 Volatile Halogenated Organics and Volatile Aromatic Organics	9 10 12 12 13
3.02 December, 1989 3.02.1 Target Compound List Inorganics 3.02.2 Purgeable Halocarbons and Purgeable Aromatics 3.02.3 Sulfate 3.02.4 Chloride	14 14 14 15
SECTION 4 - DATA QUALITY EVALUATION	17
4.01 October, 1989 4.01.1 Target Compound List Organics 4.01.2 Target Compound List Inorganics 4.01.3 Total Organic Halides (TOX) 4.01.4 Sulfate 4.01.5 Total Organic Carbon (TOC) 4.01.6 Volatile Halogenated Organics and Volatile Aromatic Organics	17 17 21 31 32 33 33
4.02 December, 1989 4.02.1 Target Compound List Inorganics 4.02.2 Purgeable Halocarbons and Purgeable Aromatics 4.02.3 Sulfate 4.02.4 Chloride	36 36 42 43 44
SECTION 5 - DATA USABILITY	45
5.01 October, 1989	45 48

APPENDICES

- A October, 1989 Validated Sample Results
- B December, 1989 Validated Sample Results

Attachments

- October, 1989 SOP NO. HW-6 CLP Data Review Forms for Organics October, 1989 SOP NO. HW-2 CLP Data Review Forms for Inorganics
- December, 1989 SOP NO. HW-2 CLP Data Review Forms for Inorganics

SECTION 1 - INTRODUCTION

1.01 Introduction

The following data validation report addresses data quality for samples collected at the National Smelting of New Jersey Site in Pedricktown, New Jersey. Samples were collected in two rounds by O'Brien & Gere Engineers, Inc. of Syracuse, New York. Laboratory analyses were performed by OBG Laboratories, Inc. of Syracuse, New York. Two separate reports were prepared by OBG Laboratories, Inc., dated October and December, 1989.

1.02 General Considerations

Validation is a process of determining the suitability of a measurement system for providing useful analytical data. Although the term is frequently used in discussing methodologies, it applies to all aspects of the system and especially to samples, their measurement, and the actual data output. Accordingly, this report outlines excursions from the applicable quality control requirements developed by O'Brien and Gere Engineers, Inc. and those outlined in the following documents:

US EPA Laboratory Data Validation - Functional Guidelines for Evaluation of Organic/Inorganic Analyses. US EPA, February 1988, June 1988, respectively.

Methods for the Chemical Analysis of Water and Wastes. US EPA - 600/4-79-020, Revised 1983.

Methods for Organic Chemical Analysis of Munincipal and Industrial Wastewater, US EPA - 600/4-82-057, July 1982.

"The Determination of Halogenated Chemicals in Water by Purge and Trap Methods, Method 502.1", US EPA, EMSL, April 1981, revised 1986.

"The Analysis of Aromatic Chemicals in Water by the Purge and Trap Method, Method 503.1", US EPA, EMSL, April 1981, revised 1986.

"Total Organic Halide, Interim Method 450.1", US EPA, Office of Research and Development, EMSL, November 1980.

The following four sections of this document address distinct aspects of the validation process.

Within each section, each round of sampling performed at the ML industries, inc., National Smelting

of New Jersey Site is discussed separately. Section 2 lists the analytical methodology employed in sample analysis. Section 3 lists the data quality assurance/quality control (QA/QC) protocols used to validate the sample data. Specific QA/QC excursions and biases are discussed in Section 4. Finally, usability with respect to the intended purposes of the data is discussed in Section 5.

SECTION 2 - ANALYTICAL METHODS

2.01 October, 1989

The first round of samples was collected at the National Smelting of New Jersey Site between August 14 and August 17, 1989. During this round, forty-six aqueous, four leachate and nineteen soil samples were collected and analyzed for the parameters listed below. The samples were collected from sub-surface soil borings, leachate and ground water monitoring wells and analyzed to collect data to be used for site characterization and a risk assessment. The following methods were used in the analysis and are US EPA methods unless otherwise specified.

Analytical Method	EPA Method Number
TCL Volatile Organics	CLP SOW 2/88 (2)
TCL Semi-volatile Organics	CLP SOW 2/88 (2)
TCL PCB/Pesticides	CLP SOW 2/88 (2)
TCL Inorganics	CLP SOW 7/87 (1)
Total Organic Halide (TOX)	450.1 (3)
Sulfate	375.3 (4)
Total Organic Carbon (TOC)	415.1 (4)
Volatile Halogenated Organics (VHO)	502.1 (5)
Volatile Aromatic Organics (VAO)	503.1 (6)

- 1) US EPA Contract Laboratory Program Statement of Work for Organic Analysis, US EPA, February 1988.
- 2) US EPA Contract Laboratory Program Statement of Work for Inorganic Analysis, US EPA, July 1987.
- 3) "Total Organic Halide, Interim Method 450.1", US EPA, Office of Research and Development, EMSL, November 1980.
- 4) Methods for Chemical Analysis of Water and Wastes, US EPA 600/4-79-020, Revised 1983.
- 5) "The Determination of Halogenated Chemicals in Water by Purge and Trap Methods, Method 502.1", US EPA, EMSL, April 1981, revised 1986.
- 6) "The Analysis of Aromatic Chemicals in Water by the Purge and Trap Method, Method 503.1", US EPA, EMSL, April 1981, revised 1986.

Sample results for the October, 1989 round of samples collected at the National Smelting of New Jersey Site can be found in Appendix A. The US EPA Standard Operating Procedure (SOP) for

2006

June 29, 1990

the Evaluation of Metals Data for the Contract Laboratory Program, No. HW-2 and CLP Organics Data Review and Preliminary Review, SOP No. HW-6 were completed for this data set and can be found in Attachment 1. The following letters can be found immediately to the right of individual sample results found on the sample results summary tables in Appendix A and therefore serve to qualify the data. Letters found in the Q column for organic analyses and the C and Q column for inorganic analyses are qualifiers used in the laboratory's data review. For the purposes of this data validation report those qualifiers located directly to the right of the sample results take precedence. The following qualifiers have been used in this data validation:

U Indicates that the compound was analyzed for, but was not detected. The sample quantitation limit is presented and adjusted for dilution and percent moisture (soil samples).

2 -× Indicates that the result should be considered approximate. This qualifier is used when the data validation procedure identifies a deficiency in the data generation process. Additionally, for organic analysis this qualifier is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but, the result is less than the sample quantification limit but greater than zero.

UJ Indicates that the detection limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation procedure identifies a deficiency in the data generation process.

R

Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any quantitative or qualitative purposes.

2.02 December, 1989

The second round of samples was collected at the National Smelting of New Jersey Site between October 16 and October 17, 1989. During this round sevent-six soil and thirty-nine aqueous samples were collected from sub-surface soil borings and ground water monitoring wells. The sampling and analysis was performed for the purpose of collecting data to be used for site characterization and a risk assessment. The samples were analyzed by the following US EPA methods.

Analytical Method	EPA Method Number
TCL Inorganics	CLP SOW 7/87 (1)
Purgeable Halocarbons	601 (2)
Purgeable Aromatics	602 (2)
Sulfate	375.3 (3)
Chloride	325.2 (3)

US EPA Contract Laboratory Program Statement of Work for Inorganic Analysis, US EPA, July 1987.

Sample results for the December, 1989 round of samples collected at the National Smelting of New Jersey Site can be found in Appendix B. The US EPA Standard Operating Procedure (SOP) for the Evaluation of Metals Data for the Contract Laboratory Program, No. HW-2 was completed for this data set and can be found in Attachment 2. Qualifiers used for these samples results are as described in Section 2.01.

²⁾ Methods for Organic Chemical Analysis of Munincipal and Industrial Wastewater, US EPA - 800/4-82-057, July 1982.

³⁾ Methods for Chemical Analysis of Water and Wastes, US EPA - 600/4-79-020, Revised 1983.

SECTION 3 - DATA VALIDATION PROTOCOLS

The following are method specific QA/QC protocols used in the validation of sample data from the National Smelting of New Jersey Site. The protocols are presented by laboratory report date.

3.01 October, 1989

3.01.1 Target Compound List Organics

Target Compound List organic compounds were analyzed for in four leachate samples using US EPA Contract Laboratory Program (CLP) analytical methods and reporting protocols outlined in the <u>US EPA Contract Laboratory Program Statement of Work for Organic Analysis</u>, February 1988. The requirements that were checked for the validation of volatile and semi-volatile organic analyses data are outlined in the <u>US EPA Laboratory Data Validation - Functional Guidelines for Evaluation of Organic Analyses</u>, February 1988 and are as follows:

- 1. Holding Times
- 2. GC/MS Instrument Tuning Criteria
- 3. Calibration
 - a. Initial Calibration
 - b. Continuing Calibration Verification
- 4. Blank Analysis
- 5. Surrogate Recovery
- 6. Matrix Spike/Matrix Spike Duplicate Analysis
- 7. Field Duplicate Analysis
- 8. Internal Standards Performance
- 9. TCL Compound Identification

June 29, 1990

- 10. Compound Quantitation and Reported Detection Limits
- 11. Tentatively Identified Compounds
- 12. System Performance
- 13. Overall Assessment of Data for the Case

The requirements to be checked for the validation of PCB/pesticides sample analyses data are outlined in the <u>US EPA Laboratory Data Validation - Functional Guidelines for Evaluation of Organic Analyses</u>, February 1988 and are as follows:

- 1. Holding Times
- 2. Pesticides Instrument Performance
 - a. DDT Retention Time
 - b. Standards Retention Time Windows
 - c. DDT and Endrin Degradation
 - d. DBC Retention Time Check
- 3. Calibration
 - a. Initial Calibration
 - b. Analytical Sequence Verification
 - c. Continuing Calibration Verification
- 4. Blank Analysis
- 5. Surrogate Recovery
- 6. Matrix Spike/Matrix Spike Duplicate Analysis
- 7. Field Duplicate Analysis
- 8. TCL Compound Identification
- 9. Compound Quantitation and Reported Detection Limits
- 10. Overall Assessment of Data for the Case

3.01.2 Target Compound List Inorganics

Target Compound List inorganics were analyzed for in sixty-nine samples using US EPA Contract Laboratory Program (CLP) analytical methods and reporting protocols outlined

in the <u>US EPA Contract Laboratory Program Statement of Work for Inorganic Analysis</u>, July, 1987. The requirements that were checked for the validation of inorganics analyses data are outlined in the <u>US EPA Laboratory Data Validation</u> - Functional Guidelines for Evaluation of Inorganic Analyses, June, 1988 and are as follows:

- 1. Holding Times
- 2. Calibration
 - a. Initial Calibration Verification
 - b. Continuing Calibration Verification
- 3. CRDL Standard Recovery
- 4. Blanks
- a. Preparation Blank Analysis
- b. Method Blank Analysis
- c. Analytical Sequence
- 5. Interference Check Sample Analysis (ICP only)
- 6. Matrix Spike Sample Analysis
- 7. Duplicates
 - a. Laboratory Duplicate Sample Analysis
 - b. Field Duplicate Sample Analysis
- 8. Laboratory Control Sample Analysis
- 9. Furnace Qualtiy Control Anlaysis
 - a. Post Digestion Spike Recovery
 - b. Duplicate Analysis Precision
 - c. Method of Standard Additions Analysis
- 10. Serial Dilution Analysis (ICP only)
- 11. Instrument Detection Limits
- 12. Sample Result Verification
- 13. Overall Assessment of Data for the Case

3.01.3 Total Organic Halides (TOX)

TOX analyses were performed on two samples using protocols outlined in "Total Organic Halide, Interim Method 450.1", US EPA, Office of Research and Development, EMSL, November 1980. Validation of sample data was performed based on QA/QC criteria specified in the analytical protocol and by O'Brien & Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Holding Times
- 2. Blanks
- a. Standard Blank
- b. Method Blank
- 3. Duplicates
 - a. Laboratory Duplicate Sample Analysis
 - b. Field Duplicate Sample Analysis
- 4. Instrument Calibration
- 5. Adsorption Efficiency Standard Recovery
- 6. Carbon Breakthrough Determination
- 7. Matrix Spike/Matrix Spike Duplicate Analysis

3.01.4 Sulfate

Sulfate analyses were performed on thirty-four samples using protocols outlined in Methods for the Chemical Analysis of Water and Wastes. US EPA - 600/4-79-020, Revised 1983. QA/QC criteria were not specified in the method, however, the data were validated using criteria established by O'Brien and Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Data completeness
- 2. Holding Times
- 3. Reference Standard Recovery
- 4. Blanks

- a. Method Blank Analysis
- b. Rinse Water Blank Analysis
- c. Field Blank Analysis
- 4. Matrix Spike Sample Analysis
- 5. Laboratory Duplicate Sample Analysis

3.01.5 Total Organic Carbon (TOC)

TOC analyses were performed on three samples using protocols outlined in Methods for the Chemical Analysis of Water and Wastes. US EPA - 600/4-79-020, Revised 1983. QA/QC criteria were not specified in the method, however, the data were validated using criteria established by O'Brien and Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Data Completeness
- 2. Holding Times
- 3. Calibration
 - a. Six Point Calibration Curve Verification
 - b. Inorganic Carbon Calibration Verification
 - c. Organic Carbon Calibration Verification
- 4. Method Blank Analysis
- 5. Reference Standard Recovery
- 6. Matrix Spike Sample Analysis
- 7. Laboratory Duplicate Sample Analysis

3.01.6 Volatile Halogenated Organics (VHO) and Volatile Aromatic Organics (VAO)

VHO and VAO analyses were performed on nine samples using protocols outlined in "The Determination of Halogenated Chemicals in Water by Purge and Trap Methods, Method 502.1", US EPA, EMSL, April 1981, revised 1986 and "The Analysis of Aromatic Chemicals in Water by the Purge and Trap Method, Method 503.1", US EPA, EMSL, April 1981, revised

1986. Validation of sample data was performed based on QA/QC criteria specified in the analytical protocols and by O'Brien & Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Holding Times
- 2. Calibration
 - a. Five Point Calibration Curve
 - b. Continuing Calibration Verification
- 3. Instrument Performance
 - a. Chromatographic Resolution
 - b. Retention Time Shift
- 4. Blanks
- a. Method Blank Analysis
- b. Field Blank Analysis
- 5. Matrix Spike/Matrix Spike Duplicate Analysis
- 6. Reference Standard Analysis
- 7. Sample Quantitation and Detection Limits

3.02 December, 1989

3.02.1 Target Compound List Inorganics

Inorganic analyses and data validation were conducted on one-hundred-three samples as specified in Section 3.01.2.

3.02.2 Purgeable Halocarbons and Purgeable Aromatics

Purgeable halocarbon and purgeable aromatic analyses were performed on six samples using protocols outlined in Methods for Organic Chemical Analysis of Munincipal and Industrial Wastewater. US EPA - 600/4-82-057, July 1982. Validation of sample data was performed based on QA/QC criteria specified in the analytical protocols and by O'Brien &

Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Holding Times
- 2. Calibration
 - a. Three Point Calibration
 - b. Continuing Calibration Verification
- 3. Blanks
- a. Method Blank Analysis
- b. Field Blank Analysis
- 4. Surrogate Recovery
- 5. Matrix Spike/Matrix Spike Duplicate Analysis
- 6. Reference Standard Recovery Analysis
- 7. Sample Quantitation and Detection Limits

3.02.3 Sulfate

Sulfate analyses and data validation were conducted on thirteen samples as specified in Section 3.01.4.

3.02.4 Chloride

Chloride analyses were performed on thirteen samples using protocols outlined in Methods for the Chemical Analysis of Water and Wastes. US EPA - 600/4-79-020, Revised 1983. QA/QC criteria were not specified in the method, however, the data were validated using criteria established by O'Brien and Gere Engineers, Inc. The following parameters were evaluated during validation of the data.

- 1. Data Completeness
- 2. Holding Times
- 3. Calibration
 - a. Seven Point Calibration Curve
 - b. Reference Standard Recovery Analysis

- 4. Blanks
 - a. Method Blank Analysis
 - b. Rinse Water Blank Analysis
 - c. Field Blank Analysis
- 5. Matrix Spike Sample Analysis
- 6. Laboratory Duplicate Sample Analysis

SECTION 4 - DATA QUALITY EVALUATION

4.01 October, 1989

Seventy-five aqueous and soil samples were collected from sub-surface soil borings and ground water monitioring wells during this round of sampling. The case file for samples collected on August 15, 1989 noted problems with the handling and shipment of one sample. The following note was written into the case file, "Rinse Blank Sample received without VOA vials. Cracked lids (2) on Site Primary B." No action is necessary regarding the lack of collection of VOA vials for the rinse blank since analyses of rinse blanks for volatile compounds are not performed. As a result of the two cracked lids, TOC and TOX analyses were not performed on sample Site Primary B as had been planned.

4.01.1 Target Compound List Organics

The volatile, semi-volatile and PCB/pesticide analytical data from four leachate samples were reviewed according to the QA/QC requirements presented in <u>US EPA</u>

<u>Laboratory Data Validation - Functional Guidelines for Evaluation of Organic Analyses</u>,

February, 1988.

Volatile and Semi-volatile Compounds

The following parameters were found to meet QA/QC criteria for this round of volatile and semi-volatile samples: Holding Times, GC/MS Instrument Tuning Criteria, Internal Standards Performance, TCL Compound Identification, Compound Quantitation, Tentatively Identified Compounds and System Performance.

Calibration (volatiles) - Initial calibrations met QA/QC criteria for all samples. Deficiencies were noted for the volatile, continuing calibration verification of 8/24/89. The percent difference (%D) between initial and continuing response factors exceeded QA/QC criteria for chloroethane (47.62%) and methylene chloride (29.11%). As a result of these excessive %Ds, methylene chloride should be considered approximate in samples 19175 and

19177. No action is necessary regarding these exceedences in samples in which these analytes were not detected.

Calibration (semi-volatiles) - Initial calibrations met QA/QC criteria for all samples. Deficiencies were noted for the semi-volatile, continuing calibration verification of 9/2/89. The percent difference (%D) between initial and continuing response factors exceeded QA/QC criteria for benzoic acid (27.05%), di-n-octylphthalate (28.83%) and 2,4-dinitrophenol (28.18%). Since these compounds were not detected in the affected samples no action is necessary regarding these exceedences.

Blank Analysis - Method blank analyses were performed at the proper frequency for volatile and semi-volatile analyses. Methylene chloride was detected in laboratory method blank number VBLK082401 at a concentration of 1 ug/L, and acetone was detected in trip blank number I9188 at a concentration of 3 ug/L. Based on an action level of ten times the highest blank concentration the following actions should be taken on affected samples. The methylene chloride results for leachate samples I9175 and I9177 should be replaced with detection limits, 50ug/L and 10ug/L, respectively. Bis(2-ethylhexyl)phthalate was detected in laboratory method blank number SBLK0821891 at a concentration of 3 ug/liter. Therefore, the sample results for bis(2-ethyl hexyl)phthalate in leachate samples I9175 and I9177 should be replaced with the detection limits, 19ug/L and 12ug/L, repectively. These sample results should be replaced because they may be partially or wholly due to blank contamination.

Surrogate Recovery - Volatile and base/neutral extractable (semi-volatile fraction) surrogate compound recoveries met QA/QC criteria. Low acid extractable (semi-volatile fraction) surrogate compound recoveries (1% - 8%) were achieved for leachate samples I9175 and I9177. Reanalysis of these samples also yielded low recoveries (1% - 7%). Reanalysis data has been presented by the laboratory as being of higher quality. However, due to the very low surrogate recoveries, non-detected sample results should be rejected for acid extractable compounds in these two samples. The following is a list of acid extractable compounds:

phenol 2-chlorophenol

2-methylphenol 4-methylphenol

2-nitrophenol 2,4-dimethylphenol

2,4-dichlorophenol 4-chloro-3-methylphenol

2,4,6,-trichlorophenol 2,4,5-trichlorophenol

2,4-dinitrophenol 4-nitrophenol

4,6-dinitro-2-methylphenol pentachlorophenol

Matrix Spike/Matrix Spike Duplicate Analysis (MS/MSD) - Matrix spike recoveries and relative percent differences between spiked and duplicate spiked samples met QA/QC criteria for volatiles analyses. Low matrix spike recoveries were achieved for phenol (2%, 4%), 2-chlorophenol (3%, 9%) and 4-chloro-3-methylphenol (3%, 3%) in sample 19175. Relative percent difference criteria between the spiked and duplicate spiked samples were exceeded for phenol (67%) and 2-chlorophenol (100%) in sample 19175. As a result of these exceedences, the detection limits for phenol, 2-chlorophenol and 4-chloro-3-methylphenol should be rejected in leachate sample 19175.

Field Duplicate Analysis - Field duplicate samples were not collected. Due to the lack of duplicates, no action is possible regarding field precision.

Compound Quantitation and Reported Detection Limits - An approximately ten percent sample result verification was performed to confirm that sample results were calculated properly from the various instrument responses. No errors were noted for any of the analyses. Elevated detection limits were listed for the volatile analysis of sample I9175 and the semi-voaltile analysis of sample I9177. Sample I9175 was diluted ten times and sample I9177 was diluted two times therefore, the standard CLP detection limits should be multiplied by the corresponding dilution factor in these samples. The elevated detection limits were found to be a result of matrix interferences (sample foaming). Sample results less than these detection limits and confirmed by mass spectrometry should be considered approximate.

Tentatively Identified Compounds (TIC)- TIC approximate concentrations are listed following the Target Compound List concentrations for each sample in Appendix A. TIC compounds have been qualitatively identified by a mass spectrometer library search. For TIC compounds identified, all major ions (greater than 10 percent relative intensity) in the reference spectrum were present in the sample spectrum and their relative intensities agreed to within 20 percent. Unidentifiable compounds are listed as unknown. Based on professional judgement, all TICs have been accurately classified.

System Performance - Based on instrument performance parameters it was determined that the GC/MS system was functioning properly during the analysis of the first round of samples collected at the National Smelting of New Jersey Site.

Overall Assessment of Data for the Case - The GC/MS system functioned properly during the analysis of samples. However, deficiencies most likely due to the sample matrix were noted. Reanalysis of samples could not improve either surrogate or matrix spike recoveries. In addition, matrix spike and surrogate recoveries for blank samples were all within criteria. Therefore, due to these matrix problems the detection limits for the acid extractable compounds should be rejected. The remaining detection limits may be used unqualified. For a further discussion of data usability refer to section 5.01.

PCB/Pesticide Compounds

The following parameters were found to meet QA/QC criteria for this round of PCB/pesticide samples: Holding Times, Pesticide Instrument Performance (DDT Retention Time, Standards Retention Time Windows, DDT and Endrin Degradation and DBC Retention Time Check), Blank Analysis and Reported Detection Limits. Since PCB/Pesticide compounds were not detected in any of the samples TCL Compound Identification and Compound Quantitation parameters are not applicable.

Calibration - The realative standard deviation (RSD) of response factors exceeded QA/QC criteria for the initial calibration of 4,4'-DDT on 8/23/89. No action is necessary regarding this excedence since all compounds were not detected. The percent difference (%D)

criteria of 20% between the initial and continuing calibration was exceeded for endrin on 8/25/89. No action is required because endrin was not detected in the samples run on that day. The laboratory performed the proper analytical sequence during the analysis of the samples.

Surrogate Recovery - The percent recovery criteria was exceeded for the surrogate compound dibutylchlorendate in sample I9175. The excessively high (432%) recovery does not warrant action since all PCB/pesticide compounds were not detected in this sample.

Matrix Spike/Matrix Spike Duplicate Analysis - Six out of twelve percent recovery (%R) and zero out of six, relative percent difference (RPD) exceeded criteria in sample 19175.

No action is necessary since lindane, 4,4'DDT and endrin were not detected in this sample.

Field Duplicate Analysis - Field duplicate samples were not collected. Due to the lack of field duplicates, no action is possible regarding field precision.

Overall Assessment of Data for the Case - The chromatographic system functioned properly during the analysis of samples. The sample data may be used without further qualification. For a further discussion of data usuability refer to Section 5.01.

4.01.2 Target Compound List Inorganics

The inorganics analytical data from sixty-nine samples were reviewed according to the QA/QC requirements presented in <u>US EPA Laboratory Data Validation - Functional Guidelines for Evaluation of Inorganic Analyses</u>, June, 1988.

The following parameters were found to meet QA/QC criteria for this round of inorganics samples: Holding Times, Interference Check Sample Analysis, Laboratory Check Sample Analysis, Serial Dilution Analysis and Sample Result Verification.

Calibration - The laboratory performed inorganic analyses with the proper analytical sequence which included the proper number of standards and blanks. Initial and continuing calibration standard recoveries for ICP analyses and continuing calibration standard recoveries for furnace analyses did not meet QA/QC criteria in a number of instances. Associated sample data should be considered approximate and biased based on the percent recovery of

the associated standard. The following table summarizes those calibration standard recoveries which exceeded QA/QC criteria, the actions taken and the affected samples.

<u>Date</u>	Analyte	% Recovery	Action	Samples Affected
9/18/89	Pb	111.5	J(+)	I9242
9/19/89	РЬ	85.2	J(+)/UJ(-)	19425, 19084
9/27/89	Se	113.5	J(+)	I9176, I9186
9/21/89	Pb Pb	125.6 86.6	J(+)	I9175 I9181
9/12/89	Cd Cd	86.3 86.7 85.2	n1(-) n1(-) 1(+)\n1(-)	I9237, I9241, I9246 I9247, I9249, I9252 I9253
9/16/89	Pb	111.9	J(+)	I924 1, I924 9
9/12/89	Cd	136.7	R(-)	19254, 19255, 19380
9/18/89	Pb	123.2	J(+)	I9381, I9383
9/22/89	Pb	85.2	J(+)/UJ(-)	19082, 19085, 19086
9/12/89	Cd	136.7	R(-)	I9183
9/23/89	Pb	89.3 83.1 79.3	n1(-) 1(+)\n1(-) n1(-)	I9178, I9179 I9182, I9184 I9185, I9187
10/5/89	Pb	111	J(+)	I9420, I9421

NOTES: (+) positive sample result
(-) non-detected sample result

Initial calibration curves for furnace analyses were evaluated based on the associated correlation coefficient. Several correlation coefficients did not meet the QA/QC criteria of ≥0.995. Associated sample results and detection limits should be considered approximate. The following table summarizes those correlation coefficients which exceeded QA/QC criteria and the affected sample data.

Analyte	Corr. Coefficient	Samples Affected
Sb	0.9870	I9084
Cđ	0.9938	19239
Cd	0.9922	19084
Ti	0.9922	I9175, I9177, I9186
Ca	0.9938	I9237, I9240-41, I9246-47, I9249 I9252-53
Pb	0.9929	I9238, I9240
Pb	0.9926	I9252-53, I9255, I9381, I9383
Sb	0.9832	I9183
Cd	0.9920	I9081-85, I9178-80, I9182
Sb	0.9885	19428
	Sb Cd Cd Ti Cd Pb Pb Sb	Sb 0.9870 Cd 0.9938 Cd 0.9922 Tl 0.9922 Cd 0.9938 Pb 0.9929 Pb 0.9926 Sb 0.9832 Cd 0.9920

CRDL Standard Recovery - With the following exceptions, standards were analyzed for inorganic analytes at a concentration approximately two times the CRDL or IDL, whichever was larger for ICP, or at the CRDL or IDL whichever is larger for furnace. The antimony CRDL standard for furnace analysis was analyzed at a concentration of 10.0ug/L but should have been analyzed at the IDL or 3.0ug/L. The lead CRDL standard for ICP analysis was analyzed at 100ug/L but should have been analyzed at two times the IDL or 40.0ug/L. No action is necessary regarding these excursions. The following table summarizes those standard recoveries which exceeded QA/QC criteria (90% - 110%) and also impacted sample results.

Date	Analyte	%Recovery	Action	Samples Affected
9/18/89	Pb	70	J(+)	I9242
8/28/89	Sb	86.7	J(+)	I9175, I9177
8/28/89	Ag	120.0 115.0	1(+) 1(+)	I9177 I9186
9/27/89	Se	116.0	J(+)	I9186,I9176
8/30/89	Pb	119.0	J(+)	I925 4
9/18/89	Pb	136.7	J(+)	I9252, I9380, I9383
9/12/89	Cd	120.4	J(+)	I9077-78
9/22/89	Pb	70.0	J(+)	19074

NOTES: (+) positive sample result
(-) non-detected sample result

Blanks - Various elements were detected in preparation and laboratory blanks above the instrument detection limits. Sample data should be qualified based on the blank action level which is equivalent to five times the highest level of blank contamination detected. The following table summarizes those elements detected in blank samples and the corresponding required actions.

Date	Element	Concentration (ug/L)	Sample <u>Affected</u>	<u>Action</u>
8/28/89	Co	8.0	I9175	raise detection limit to 8ug/L
-//	Cu	5.0	I9084	raise detection limit to Sug/L
			I9181	raise detection limit to 12ug/L
	Ag	8.0	I9177	raise detection limit to 12ug/L
			I9186	raise detection limit to 28ug/L
			I9250	raise detection limit to 37ug/L
			I9251	raise detection limit to 34ug/L
	v	5.0	I9175	raise detection limit to 16ug/L
			I9177	raise detection limit to 7ug/L
	Se	5.0	I9186	raise detection limit to 22ug/L
9/21/89	Pb(F)	3.0	19250	raise detection limit to 8.4ug/L
9/18/89	As	1.7	I9240	raise detection limit to 3.1ug/L
8/30/89	Pb(ICP)	23.0	I9254	raise detection limit to 103ug/L
9/15/89	Pb(F)	2.7	I9238	raise detection limit to 9.4ug/L
, ,			I9240	raise detection limit to 9.8ug/L
9/18/89	Pb(F)	2.7	I9252	raise detection limit to 5.9ug/L
.,,			I9253	raise detection limit to 13ug/L
			I9255	raise detection limit to 9.9ug/L
			19380	raise detection limit to 2.7ug/L
			I9381	raise detection limit to 6.6ug/L
			19383	raise detection limit to 3.4ug/L
9/16/89	Pb(F)	2.7	I924 1	raise detection limit to 10.7ug/L
• •	• •		19246	raise detection limit to 2.7ug/L
			19249	raise detection limit to 4.9ug/L
8/30/89	Cd	4.0	19079	raise detection limit to 16.0ug/L
• . •			I9086	raise detection limit to 15.0ug/L
	Cr	5.0	I9183	raise detection limit to 3.0ug/L
9/18/89	As	0.67mg/kg	19425	raise detection limit to 2.78mg/kg
• •		.	19428	raise detection limit to 2.04mg/kg
9/12/89	Pb(ICP)	3.3mg/kg	I94 15	raise detection limit to 10.7mg/kg
-,,	\ /		19422	raise detection limit to 15.9mg/kg

NOTES: (F) sample analysis performed by furnace atomic absorption spectroscopy (ICP) sample analysis performed by inductively coupled plasma spectroscopy

Matrix Spike Sample Analysis - Matrix effects on the digestion procedure and measurement methodology were evaluated through the use of spiking samples. The following

table summarizes excursions from matrix spike recovery criteria. The table also contains the appropriate actions to be taken for the affected samples. Those samples for which a matrix spike sample analysis was not performed, associated positive sample data less than four times the spiking level should be approximated.

Date	<u>Element</u>	% Recovery	Actions	Affected Samples
8/28/89	Ni	74.4	J(+)/UJ(-)	I9175-77, I9186, I9242, I9250-51 I9256-57, I9084
9/20/89	Se	0	R(+)/R(-)	I9175-77 , I 9186
9/18-20/89	Pb	not reported	J(+)≤80ug/L (furnace)	19242 , 19245 , 1925 1
10/4/89	Sb	40 (post digestion 47)	J(+)/UJ(-)	I9237-38
9/23/89	Pb	39 (post digest 128.5)	J(+)/UJ(-) (furnace)	I9074-78, I9080-86 I9178-80, I9187
10/5/89	Pb	not reported	J(+)≤ug/L (furnace)	I9420-21
9/20/89	Se	55.0 (post digestion 96%)	UJ(-)	1942 5, 1942 8

NOTES: (+) positive sample result
(-) non-detected sample result
(furnace) sample analysis perfomed by furnace atomic absorption spectroscopy

Duplicates - Laboratory precision was evaluated through the duplicate analysis of an environmental sample. However, for those analytes which did not receive duplicate analysis, all associated positive sample results should be considered approximate. The following table summarizes laboratory duplicate sample analyses results, actions and associated samples.

Date	Element	RPD/>CRDL	Action	Samples Affected
8/28/89	Al	102.8	R(+)	I9176-77 , I9186
10/4/89	Sb	114.7	R(+)	I9175-77, I9186
9/12/89	As	34.7	J(+)	I9175-77, I9186, I9248 , I9256
8/28/89	Ba Ca Cr Cu Ni K Na Zn Pb	>CRDL 45.4 57.5 56.1 29.5 31.7 71.4 33.1 not reported	R(+) J(+) R(+) R(+) J(+) J(+) J(+) J(+) J(-) (ICP)	I9175-77, I9186 I9175-77, I9186 I9175-77, I9186 I9175-77, I9186, I9239, I9242-45 I9248, I9250-51, I9084 I9175-77, I9186, I9242-45, I9250-51 I9176-77, I9186, I9242, I9250-51 I9256-57 I9175-77, I9186 I9175-19177, I9186 I9175-77, I9186, I9250-51 I9243-44
8/30/89	Pb	not reported	J(+) (ICP)	19079
10/5/89	Pb	not reported	J(+) (furnace)	I9420-21

NOTE: >CRDL signifies that duplicate sample results less than five times the CRDL did not agree to within +/-CRDL for aqueous samples or +/-2xCRDL for soil samples.

The precision of the field collection techniques were evaluated through a comparison of data from each of the duplicate samples. The following table summarizes field duplicate sample analyses results, actions and associated samples.

Date	Blement	RPD/>CRDL	Action	Samples Affected
9/19/89	Pb	>CRDL	none	samples qualified due to poor lab precision
9/12/89	Pb Pb	138 54.3, 77.5	R(+) J(+)	I9424, I9427 I9412-14, I9416-19, I9423, I9425-26 I9428-30

NOTE: >CRDL signifies that duplicate sample results less than five times the CRDL did not agree to within +/-CRDL for aqueous samples or +/-2xCRDL for soil samples. (+) positive sample result

⁽⁺⁾ positive sample result
(-) non-detected sample result
(furnace) sample analysis performed by furnace atomic absorption spectroscopy

Furnace Quality Control Analysis - To assess precision, all furnace analyses were performed in duplicate and the percent relative standard deviation (%RSD) of the two results was calculated. The following analyses for the samples listed exceeded the 20% criteria: selenium in samples 19176 and 19186; and antimony in sample 19425. No action is necessary regarding the selenium exceedences since the sample results have been rejected due to poor agreement between laboratory duplicates. The antimony sample result should be considered approximate. To assess method accuracy and matrix effects, each sample for furnace analysis was spiked. The percent recoveries of these post-digestion spikes were evaluated to determine the need for the method of standard additions (MSA). However, MSA was not performed for any of the samples for which it was required. As a result, the following analytes for the samples listed should be considered approximate: Cd/I9248, I9076, I9081, I9085; Pb/I9245, I9251, I9175, I9078; and Sb/I9237. For the following samples, the sample concentration was less than half the concentration of the post digestion spike and the spike recovery range exceeded the 85% - 115% recovery range limit. The following table summarizes the excursions and their effect on sample results.

Sample Number	Element	Percent Recovery	Action
I9084	Sb Pb	72.0 83.0	n1(-) n1(-)
19256	As Pb	60.0 47.0	n1(-)
19257	As Pb	68.5 81.0	J(+) UJ(-)
I9175	Tl	118.4	A
I9176	РЬ	0, 121.5	R(-)
I9177	Pb	0	R(-)
I9181	Pb	0	R(-)
I9186	Pb	0	R(-)
19239	Cd Pb	72.0 40.0	UJ(-)
19237	Sb	64.0	J(+)
I9238	Sb Pb	47.0 55.5	UJ(-)
I9240	As Pb	82.0 50.0	UJ(-)
I9246	Cd	84.0	UJ(-)
I9247	Cd	80.2	UJ(-)
I9250	Pb	65.0	UJ(-)
19252	Cd	79.6	UJ(-)
I9381	Pb	65.5	UJ(-)
19080	Pb Cd	64.5 81.8	UJ(-)
19082	Pb	84.0	UJ(-)
I9178	Pb	73.0	UJ(-)
I9182	Pb	75.5	UJ(-)
I9185	Pb	75.0	UJ(-)
I9187	Pb	81.0	UJ(-)
I9184	Cd	82.0	UJ(-)
I9187	Cd	76.2	UJ(-)
19428	Sb	55.0	UJ(-)

NOTE: A - accept sample result

Instrument Detection Limits - Instrument detection limits were found to be lower than the CRDLs for all analyses with the exception of lead analysis performed by ICP. In this

^{(-) -} non-detected sample result (+) - positive sample result

instance the CRDL is 3ug/L and the instrument detection limit is 20ug/L. Lead sample results determined by ICP were five times the instrument detection limit therefore, no qualification of sample results is required. In several instances sample results and sample detection limits less than the instrument detection limits were reported on the sample result summary forms. In all cases the summary form was changed to reflect the actual instrument detection limit. The following table summarizes changes made to the sample results summary forms.

Sample Number	Element	Reported Result (ug/L)	New Result (ug/L)
19175	Ti	5.0U	3.0UJ
I9177	Tl	50.0U	30.0UJ
I9186	Tl	50.0U	3 0.0 UJ
19084	Pb	1.0U	2.0UJ
19239	Рь	1.0U	2.0UJ
I9248	Pb	10.0U	20.0U
19256	Pb	5.0U	10.0UJ
19257	Pb	5.0U	10.0UJ
I9246	Pb	1.6	3.0U
19247	Pb	1.0U	3.0U
19380	Pb	· 2.3	3.0U
19074	Pb	1.0U	3.0UJ
19080	Pъ	1.0U	3.0UJ
I9081	Pb	5.0U	15.0U
19082	Pb	1.0U	3.0UJ
I9178	Pь	1.0U	3.0UJ
I9179	Pb	1.0U	3.0UJ
I9180	Pb	5.0U	15.0U
I9182	Рь	1.0U	3.0UJ
I9183	Pb	1.0U	3.0UJ
I9184	Pb	1.1	3.0U
I9185	Рь	1.0U	3.0UJ
I9187	Pb	1.0U	3.0UJ

Overall Assessment of Data for the Case - Deficiencies were noted that caused the rejection of some sample data. Rejection of data occurred due to problems with instrument calibration, matrix spike analysis, laboratory and field duplicates and furnace post-digestion spike analysis. However, rejection or approximation of the data for the whole case is not warranted since the deficiencies noted are isolated and do not appear to indicate system malfunction.

4.01.3 Total Organic Halides (TOX)

Validation of data for two samples for TOX analysis was performed based on QA/QC criteria specified in the analytical protocol and by O'Brien & Gere Engineers, Inc. The following parameters were found to meet QA/QC criteria for this round of total organic halides: Holding Times, Blank Analysis, Instrument Calibration, Adsorption Efficiency Standard Recovery and Matrix Spike/Matrix Spike Duplicate Analysis.

Laboratory Duplicate Sample Analysis - Duplicate analysis is required for all samples, blanks and standards. Duplicate analysis was not performed for the standard blank or the last calibration standard analyzed. Upon review of the sample data, no action was taken because both samples were non-detected for TOX.

Field Duplicate Sample Analysis - Field duplicate samples were not collected. Without a measure of field precision, no action is possible regarding field duplicates.

Carbon Breakthrough Determination - Carbon breakthrough determination criteria were not met for samples I9176 (37.8%) and I9186 (25.9%). All second-column measurements should not exceed 10% of both column measurements. No action was taken regarding this excursion, because both samples were non-detected for TOX. Dilution of the samples in order to eliminate matrix interferences may have contributed to the failure of carbon breakthrough criteria.

4.01.4 Sulfate

The data for sulfate analysis from thirty-four samples were validated using criteria established by O'Brien & Gere Engineers, Inc. The following parameters were found to met QA/QC criteria for this round of sulfate analysis: Reference Standard Recovery, and Blank Analysis.

Holding Times - Holding time criteria of 28 days was exceeded for the following samples collected on 8/15/89 and analyzed on 9/15/89: I9183, I9182, I9181, I9180. In addition the following samples collected on 8/16/89 and analyzed on 9/15/89 also failed to meet the holding time criteria: I9380 and I9381. The results for these samples should be appoximated.

Matrix Spike Sample Analysis - The 75%-125% criteria for matrix spike analysis was exceeded for two of the four samples spiked. However, no corrective action was necessary because the sample result exceeded the amount spiked by a factor of four or more in each case.

Laboratory Duplicate Sample Anlysis - Several laboratory duplicate samples were analyzed. Only one sample duplicate (19380) exceeded the > 20% or the > +/-CRDL criteria when sample concentration is less than five times the contract required detection limit (CRDL). The samples analyzed on the same day as 19380 are affected and are as follows: 19183, 19182, 19181, 19180, 19380, and 19281. The sulfate results for these samples should be approximated.

Data Completeness - The data completeness review involved several factors regarding data presentation and are as follows: legilibility and readibility of the raw data, correctness of calculations, and frequency of quality control samples analyzed. The sulfate data were presented in a legilible column format. Data were present and sample calculations were completed correctly. Percent recovery and relative percent difference for matrix spike and duplicate analyses were incorrectly calculated in the raw data. However, these results were reported correctly on the CLP forms. Two transcription errors were noted. First the sulfate result for sample 19070 was not reported on Form I. A review of the chain of custody

indicated that sulfate was to be analyzed on this sample. According to the raw data, this sample was analyzed on 8/22/89 with a result of 250,000 mg/L. Secondly, the duplicate result for I9380 was incorrectly reported as 7000. A review of the raw data indicated that this result was actually 9000 mg/L. This error does affect the sample data. Quality control samples which include matrix spikes, duplicates, reference standards, and blanks were analyzed at the required frequency. Overall no corrective action was taken regarding data completeness criteria.

4.01.5 Total Organic Carbon (TOC)

The data for TOC analysis from three samples were validated according to criteria established by O'Brien & Gere Engineer's, Inc. The following parameters were found to meet QA/QC criteria for this round of samples: Holding Times, Calibration, Method Blank Analysis, Reference Standard Analysis and Laboratory Duplicate Analysis.

Matrix Spike Sample Analysis - The percent recovery for matrix spike analysis failed the 75%-125% criteria for sample I9177 (67.5%). Therefore, the TOC data for the following samples should be approximated: I9186, I9177, and I9176.

Data Completeness - The raw data for TOC analysis was complete, although due to poor reproduction it was difficult to read. Samples concentrations were calculated correctly and the proper number of quality control samples were analyzed. Therefore, corrective action regarding data completeness was not necessary.

4.01.6 Volatile Halogenated Organics (VHO) and Volatile Aromatic Organics (VAO)

Validation of sample data from nine samples for VHO and VAO analysis was performed based on QA/QC criteria specified in the analytical method and by O'Brien & Gere Engineers, Inc. The following parameters were found to meet QA/QC criteria for this round of sampling: Holding Times and Matrix Spike/Matrix Spike Duplicate Analysis.

Calibration - Five point calibrations were performed for both VHO and VAO analysis. However the calibrations did not include all the compounds listed in methods 502.1 and 503.1. In addition several compounds exceeded the relative standard deviation (RSD) criteria of <10% for initial calibration. The affected samples are I9084 (VHO analysis only), I9250 and I9251 (VAO analysis only). When the 10% RSD criteria is exceeded, the analyst must use the calibration curve to calculate the concentration of the compound. Upon review of the raw data, the analyst did not use the appropriate calibration curve to calculate the concentrations of the affected compounds in these samples. For sample I9084, the concentrations for the following compounds should have been calculated using the calibration curve: bromochloromethane and dibromochloromethane. The results for these two compounds should be considered appoximate. For samples I9250 and I9251 (duplicate of I9250), the sample results for the following compounds should be appoximated, o-xylene and m-xylene. The sample results for these compounds were calculated using a one-point calibration standard using the confirmation column.

For continuing calibration, the criteria for percent difference (%D) between initial and continuing response factors is established in the analytical protocol as <20%. For VAO analysis a continuing calibration check could not be evaluated for o-xylene and m-xylene since five point initial calibration on the confirmation column was not performed for these two analytes. Therefore, the concentrations of these two compounds should be approximated in the affected samples (19250 and 19251). For VHO analysis, the following compounds failed %D criteria: 1,1-dichloroethene (34%); carbon tetrachloride (31%); and bromoform (49%). Only 1,1-dichloroethene was detected in the analyzed samples therefore, corrective action was limited to this compound. The results for 1,1-dichloroethene in samples 19256 and 19257 (duplicate of 19256) should be approximated.

Corrective action taken in this data validation was limited to those compounds that were detected in the samples analyzed. Action was not taken on the non-detected compounds that failed initial or continuing calibration criteria.

Instrument Performance - Instrument performance was evaluated by reviewing chromatographic resolution and retention time shifts. Both the VAO and VHO analytical methods have inherent co-elution problems which involve several compounds, therefore

confirmation analysis using a dissimiliar column must be performed. Resolution problems were encountered in VHO analysis for the low level standard at 0.5ppb. Confirmation analysis was performed for samples in which commonly co-eluting compounds were detected.

Blanks - For VAO analysis compounds of interest were not detected in any of the method, rinse and trip blanks. For VHO analysis, compounds of interest were not detected above the instrument detection limit for the method and trip blank. Contamination by several compounds was present in the rinse blank. No action was taken regarding this excursion for bromochlormethane, 1,2-dichloropropane, and dibromochloromethane because these compounds were not detected in the samples. However, chloroform was detected in the rinse blank as well as samples 19250 and 19251 (Duplicate of 19250). The chloroform results for these samples should be flagged with a "U" indicating an elevated detection limit and also that the presence of chloroform might be partially or wholly due to blank contamination.

Reference Standard Analysis - A Reference standard was analyzed for both VHO and VAO analyses. Action was taken only on the compounds that were detected in the samples that failed the 80%-120% criteria. For VAO analysis all the compounds analyzed in the reference standard met criteria. For VHO analysis, the following compounds exceeded criteria; 1,1-dichloroethene and 1,2-dichloropropane. Therefore, the results for these compounds should be approximated. The following samples are affected: 19256 and 19257 for 1,1-dichloroethene; and 19084 for 1,2-dichloropropane. In addition it was noted that tetrachloroethene was detected in some samples but was not present in either the VAO or the VHO reference standards. Therefore, an evaluation of accuracy based on reference standard analysis was not possible.

Sample Quantitation and Detection Limits - Sample quantitation was accomplished several ways. For VAO analysis, the compounds m-xylene and o-xylene were quantitated using one point calibration on the confirmation column. These results should be approximated in samples 19250 and 19251 since, according to the method, a five point calibration curve must be used to quantitate results. Tetrachloroethene, ethyl benzene and toluene were quantitated using response factors calculated from standards analyzed the same

day as the samples. These response factors were all within 10% of the initial calibration, therefore no qualification of results is necessary. For VHO analysis, sample quantitation was accomplished through the use of a response factor calcualted from the continuing calibration standard. As previously noted in the calibration discussion, 1,1-dichlorethene failed continuing calibration criteria and therefore the results in samples 19256 and 19257 should be appoximated.

The results for tetrachloroethene which is common to both VAO and VHO analyses, did not agree. Upon review of the raw data, it is assumed that the VAO result is more accurate due to the fact that a smaller dilution (1:10) was made for this analysis. The sample analyzed for VHO was diluted at 1:100, which resulted in a concentration for tetrachloroethene very close to the detection limit. Based on the failure of the analyst to analyze a reference standard containing tetrachloroethene for either analysis, no other evaluation for accuracy could be made. Therefore, both results for samples 19256 and 19257 should be considered appoximate.

Sample detection limits for several samples were raised due to high concentrations of certain compounds and matrix interferences. Quantitation of detection limits reflected the dilutions made by the analyst.

Field Duplicate Analysis - Two field duplicate samples were also collected and analyzed. Both samples were within expected QA/QC limits for relative percent difference for volatile analysis.

4.02 December, 1989

One hundred and thirteen aqueous and soil samples were collected from sub-surface soil borings and ground water monitioring wells during this round of sampling. Nothing unusual occurred during the collection or shipment of samples.

4.02.1 Target Compound List Inorganics

The inorganics analytical data from one-hundred-three samples were reviewed according to the QA/QC requirements presented in <u>US EPA Laboratory Data Validation</u> - <u>Functional Guidelines for Evaluation of Inorganic Analyses</u>, June, 1988.

The following parameters were found to meet QA/QC criteria for this round of inorganics samples: Holding Times, Interference Check Sample Analysis, Serial Dilution Analysis and Sample Result Verification.

Calibration - The initial calibration recovery (114%) and a continuing recovery (119.7%) exceeded criteria for cadmium on 12/5/89. As a result, cadmium results in samples J2622 and J2627 should be considered approximate. The laboratory performed inorganic analyses with the proper analytical sequence which included the proper number of standards and blanks. Initial calibration curves for furnace analyses were evaluated based on the associated correlation coefficient. The correlation coefficients for this round of metals analysis met the QA/QC criteria of ≥0.995.

CRDL Standard Recovery - Standards were analyzed for inorganic analytes at a concentration approximately two times the CRDL or IDL, whichever was larger. The following table summarizes those standard recoveries which exceeded QA/QC criteria and also impacted sample results. Those affected samples listed below should be considered approximate.

Date	Analyte	%Recovery	Action	Samples Affected
11/21/89	Cr	115.0	J(+)	J2597
11/21/89	Pb	114.0	J(+)	J2609
11/22/89	Pb	170.0		J2619, J2625-J2627
• •		-	J(+)	
11/14/89	Pb	117.0	J(+)	J3077, J3086
11/21/89	Se	114.0	J(+)	J3030, J3031

NOTES: (+) positive sample result

Blanks - Various elements were detected in preparation and laboratory blanks above the instrument detection limits. Sample data should be qualified based on the blank action level which is equivalent to five times the highest level of blank contamination detected. The following table summarizes those elements detected in blank samples and the corresponding required actions.

<u>Date</u>	Element	Concentration (ug/L)	Sample Affected	<u>Action</u>
11/21/89	Cd	3.0	J2597	raise detection limit to 14ug/L
11/21/89	Cr	2.0	J2619 J2621 J2622 J2623	raise detection limit to 7ug/L raise detection limit to 3ug/L raise detection limit to 5ug/L raise detection limit to 4ug/L
11/27/89	As	7.9	J2620	raise detection limit to 5.6ug/L
11/22/89	Pb	1.9	J2619 J2620 J2621	raise detection limit to Sug/L raise detection limit to 8.4ug/L raise detection limit to 8.2ug/L
12/5/89	Cd	1.3	J2622	raise detection limit to 1.1ug/L
11/14/89	Pb	32.0	J3042	raise detection limit to 14.6mg/kg
			J3045	raise detection limit to 13.9mg/kg
			J3 058	raise detection limit to 13.9mg/kg
			J3 070	raise detection limit to 15.3mg/kg
			J3 086	raise detection limit to 9.6mg/kg
11/15/89	Pb	45.0	J3090	raise detection limit to 20.0mg/kg

Matrix Spike Sample Analysis - The following table summarizes excursions from matrix spike recovery criteria, affected samples and appropriate actions. For those samples which a matrix spike sample analysis was not performed, associated positive sample data less than four times the spiking level should be approximated.

Date	Element	% Recovery	<u>Actions</u>	Affected Samples
11/27/89	Se	62.0	UJ(-)	J2597
11/22/89	Pb	not reported	J(+)≤2000ug/L (furnace)	J2602, J2604, J2606-08
11/22/89	Pb	-3.5% post digestion 60%	J.(+)/J(-) (furnace)	J2612, J2615, J2617-23 J2625-27
12/5/89	Cd	not reported	$J(+) \leq 20 ug/L$	J2627
11/21/89	Cr	not reported	$J(+) \leq 800 ug/L$	J2620, J2627
11/21/89	Pb	not reported	J(+)≤2000ug/L (ICP)	J2616
11/14/89	Pb	213.8	R(+) (ICP)	J3068-69 , J307 1-85, J 3087
11/21/89	Sb	60.0 (post digestion 98%)	J(+)/UJ(-)	J3 029- 3 1
11/21/89	Pb	not reported	J(+)≤500mg/kg (ICP)	J3 031
11/21/89	Zn	73.2 (post digestion 98%)	J(+)/UJ(-)	J3029-31

NOTES:

(+) positive sample result
(-) non-detected sample result

(furnace) sample analysis was performed by furnace atomic absorption spectroscopy (ICP) sample analysis was performed by inductively coupled plasma spectroscopy

Duplicates - Field duplicate samples were not collected for aqueous samples. Without a measure of field precision, no action is possible regarding field duplicates. Two field duplicate pairs were collected for soil samples. The agreement between duplicate samples did not meet QA/QC criteria. However, no action is necessary regarding this exceedence. Laboratory precision was evaluated through the duplicate analysis of an environmental sample. However, for those analytes which did not receive duplicate analysis, all associated positive sample results should be considered approximate. The following table summarizes laboratory duplicate sample analyses results, actions and associated samples.

Date	Element	RPD/>CRDL	Action	Samples Affected
11/22/89	Pb	>CRDL	R(+) (furnace)	J2612, J2615, J2617-18, J2625-27
11/21/89	РЬ	not reported	J(+) (ICP)	J2616, J2624
12/5/89	Cd	not reported	J(+)	J2627
11/21/89	Cr	not reported	J(+)	J2620, J2627
11/14/89	Pb	85.3%	J(+) (ICP)	J3068-69, J3071-85, J3087
11/21/89	Sb	>CRDL × 2	R(+)	J3029-30
11/21/89	Pb	not reported	J(+) (ICP)	J3 029-31

NOTE: >CRDL signifies that duplicate sample results less than five times the CRDL did not agree to within +/-CRDL for aqueous samples or +/-2xCRDL for soil samples.

(+) positive sample result

(furnace) sample analysis was performed by furnace atomic absorption spectroscopy (ICP) sample analysis was performed by inductively coupled plasma spectroscopy

Laboratory Control Sample Analysis - An external quality control sample was analyzed in conjunction with the samples in order to monitor digestion efficiency and method accuracy. Recovery criteria were met except for antimony and copper analyses which were conducted on 11/21/89. Low recoveries were achieved from the solid sample for these analytes. As a result, copper results in samples J3029 - J3031 and antimony results in samples J3029 - J3030 should be approximated. In addition, the detection limit for antimony in sample J3031 should be approximated.

Furnace Quality Control Analysis - To assess method precision all furnace analyses were performed in duplicate and the percent relative standard deviation (%RSD) of the the two results was calculated. The following analyses for the samples listed exceeded the 20% criteria: cadmium and lead in sample J2627, and selenium in samples J3030-31. These sample results should be considered approximate. Method of standard additions (MSA), when performed met QA/QC criteria for correlation coefficients which must be equal to or exceed 0.995. MSA was not performed when it was required for antimony in sample J2597. As a result, this sample result should be considered approximate. For the following samples, the sample concentration was less than half the concentration of the post digestion spike and the spike recovery exceeded the 85% - 115% recovery range. The following table summarizes the

excursions and their effect on sample results.

Sample Number	Element	Percent Recovery	Action
J2597	Se	36, 134	A
J2611	Pb	11.5, 70	UJ(-)
J2619	Aa Cd	55 204	UJ(-)
J2620	Cd	184	A .
J2621	Cd	227.9	A
J2622	Cd	227.8	J(+)
J2623	Cd	242.6	A
J2627	Cd	209	J(+)
J3030	Se	136	J(+)

A - accept sample result

Instrument Detection Limits - Instrument detection limits were found to be lower than the CRDLs for all analyses with the exception of lead analysis performed by ICP. In this instance the CRDL is 3ug/L and the instrument detection limit is 20ug/L. Therefore, all lead sample results determined by ICP which are not five times the instrument detection limit should be considered approximate. Thus, the lead results and elevated detection limits due to blank contamination in samples J3042, J3058, J3077, and J3086 should be approximated. In several instances sample results and sample detection limits which were less than the instrument detection limits were reported on the sample result summary forms. In all cases the summary form was changed to reflect the actual instrument detection limit. The following table summarizes the changes that were made to the sample results summary forms.

^{(-) -} non-detected sample result (+) - positive sample result

⁻ positive sample result

Sample Number	Element	Reported Result (ug/L)	New Result (ug/L
J2597	Se	10.0U	20.0UJ
J2611	Pb	10.0U	20.0UJ
J2619	As	1. 0 U	3.0UJ
J2621	As Cr	1.0U 3.0B	3.0U 5.0U
J2622	As	1.0U	3.0 U
J2623	As Cr	1.0U 4.0B	3.0U 5.0U
J2625	Рь	1.6B	2.0U
J2626	Pb	1.2B	2.0U
J2627	As Cr Pb	1.0U 1.0B 1.3B	3.0U 5.0U 2.0U

Overall Assessment of Data for the Case - Deficiencies were noted that caused the rejection of some sample data. Rejection of data occurred due to problems with matrix spike analysis, and laboratory duplicate analysis. Deficiencies were noted for all of the parameters discussed in the previous sections. However, rejection or approximation of the data for the whole case is not warranted since the deficiencies noted are isolated and do not indicate system malfunction.

4.02.2 Purgeable Halocarbons and Purgeable Aromatics

Validation of sample data from six samples for purgeable volatiles and aromatics was performed based on QA/QC criteria specified in the analytical methods and by O'Brien & Gere Engineers, Inc. The following parameters met QA/QC criteria: Holding Times, Method and Field Blank Analysis, Surrogate Recovery, Reference Standard Analysis, and Matrix Spike/Matrix Spike Duplicate Analysis.

Calibration - For initial calibration, the analytical methods require three point calibration. Documentation of the initial three point calibration was not provided in the raw data. However, several continuing calibration standards at 10 ug/L were analyzed. Response factors were present in the raw data for these calibration standards. When these continuing

calibration response factors were compared to the initial calibration response factors present in the raw data, they agreed to within the 20% difference criteria. Based on limited documentation of initial and continuing calibration provided by the laboratory, all positive sample results should be appoximated.

Sample Quantitation and Detection Limits - Samples were quantitated using the response factor indicated in the raw data for the volatile halogenated scan except for 1,3-dichlorobenzene. This compound was calculated using the response factor indicated in the raw data for the volatile aromatic scan. In addition confirmation analysis using a dissimilar column was performed for the detected compounds. All quantitation of detected compounds was done using the primary column. Therefore, all positive sample results should be approximated. Proper detection limits were reported.

4.02.3 Sulfate

Data validation for sulfate from thirteen samples was performed as specified in Section 4.01.4. The following parameters met QA/QC criteria: Data Completeness, Holding Times, Reference Standard Analysis, Method and Field Blank Analysis, and Laboratory Duplicate Analysis.

Matrix Spike Sample Analysis - Matrix spike percent recovery did not meet the 75%-125% criteria. Upon review of the raw data, it was determined that the sample was spiked incorrectly by the laboratory. As a result, an accurate measure of matrix effects was not possible. Without a measure of matrix effects qualification of the data was not possible. However, reference standard analysis indicates that the procedure was within expected accuracy criteria.

Blanks - The rinse blank was the only blank found to be contaminated with sulfate. An action level of five times this contamination was calculated (5mg/L). Samples containing concentrations of sulfate greater than the instrument detection limit and less than the action level were flagged with a "U". This qualifier indicates an elevated detection limit and that the sulfate detected might be wholly or partially due to the blank contamination. The only

June 29, 1990

sample affected was J2621 (3U). Samples containing sulfate greater than the action level do not need to be qualified.

4.02.4 Chloride

Data validation for chloride analysis was performed on results from thirteen samples using criteria established by O'Brien & Gere Engineers, Inc. The following QA/QC parameters met criteria: Data Completeness, Holding Times, Calibration, Blanks, Matrix Spike and Duplicate Analysis. All QA/QC criteria were met for chloride analysis, therefore no qualification of the data is necessary.

SECTION 5 - DATA USABILITY

5.01 October, 1989 Data Package

The first round of samples was collected between August 14 and 17, 1989 from sub-surface soil borings and ground water monitoring wells. Seventy-five aqueous, leachate and soil samples were collected and analyzed for the purpose of site characterization and assessing the risk posed by the site. The following discussion is a summary of the qualifications made to the sample data based on the data validation criteria outlined in Section 3. The specific QA/QC deficiencies resulting in the qualification of the sample data are contained in Section 4. Rejected sample data identified during the data validation should not be used for any qualitative or quantitative purposes. Approximated sample results or detection limits may be used for qualitative purposes or used for quantitative purposes with proper assumptions so as to not misrepresent the data.

5.01.1 Target Compound List Organics

For volatile organic analysis the detection limits for methylene chloride were raised in samples 19175 (50ug/L) and 19177 (10ug/L). Based on the data validation criteria established in Section 3, no other qualification of data was necessary. Therefore, 100% of the volatile organic CLP data is useable without further qualification.

For semi-volatile analysis, the detection limit for bis(2-ethylhexyl) phthalate was raised in samples I9175 (19ug/L) and I9177 (12ug/L). The detection limits for the acid extractable compounds were rejected in two leachate samples I9175 and I9177 due to matrix interferences. The remainder of the semi-volatile data can be used without further qualification.

No qualification was necessary for PCB/Pesticide analysis. Deficiencies from QA/QC criteria were evident but qualification of the data was not necessary because PCB/Pesticide compounds were not detected in the samples. Therefore, 100% of the PCB/Pesticide data can be used without qualification.

5.01.2 Target Compound List Inorganics

The following is a summary of sample data by analyte that was rejected based on

QA/QC criteria outlined in section 4.

Cadmium: 19254, 19255, 19380, 19183.

Lead: 19181, 19424, 19427, 19176, 19177, 19186.

Aluminum: 19176, 19177, 19186.

Selenium: 19175, 19176, 19177, 19186.

Antimony: 19175, 19176, 19177, 19186.

Barium: 19175, 19176, 19177, 19186.

Chromium: I9084, I9175, I9176, I9177, I9186, I9239, I9242, I9243, I9244, I9245, I9248, I9250, I9251.

Copper: I9175, I9176, I9177, I9186, I9242, I9243, I9244, I9245, I9250, I9251.

Sodium: I9175, I9176, I9177, I9186.

The following data was approximated based on data validation criteria outlined in Section 4.

Cadmium: I9076, I9077, I9078, I9080, I9081-85, I9178-80, I9182, I9184, I9187, I9237, I9239-41, I9246-49, I9252-53.

Lead: 19074-86, 19175, 19178-80, 19182-85, 19187, 19238-45, 19250-51,

19256-57,19381, 19412-14, 19416-21 19423, 19425-26, 19428-30.

Antimony: 19084, 19183, 19237-38, 19425, 19428.

Thallium: 19175, 19177, 19186.

Nickel: 19084, 19175-77, 19186, 19250-51, 19242, 19256-57.

Arsenic: I9175-77, I9186, I9240, I9248, I9256-57.

Calcium: I9175-77, I9186.

Potassium: I9175-77, I9186.

Zinc: I9175-77, I9186, I9250-51.

The following detection limits were raised due to blank contamination:

Cobalt: 19175.

Copper: I9084, I9181.

Silver: 19177, 19186, 19250-51.

Vanadium: I9175, I9177.

Selenium: I9186.

Lead: 19238, 19240-41, 19246, 19249, 19250, 19252-55, 19380-81, 19383, 19415, 19422.

Arsenic: 19240, 19425, 19428.

Cadmium: I9079, I9086, I9183.

Chromium: I9183

5.01.3 Non-CLP Inorganic Analysis

Data were not rejected for Non-CLP Inorganic Analysis. No qualification of data was necessary for Total Organic Halide (TOX) analysis. Sample data for sulfate was appoximated for the following samples: I9180-83, and I9380-81. Sample data for Total Organic Carbon (TOC) was approximated for the following samples: I9176-I9177 and I9186. The remaining data can be used without further qualification.

5.01.4 Volatile Halogenated Organic (VHO) and Volatile Aromatic Organic Analysis (VAO)

Sample data were not rejected for VHO or VAO analysis. The compounds in the following samples were appoximated for VHO and VAO analysis:

19084: bromodichloromethane, dibromochloromethane, and 1,2-dichloropropane.

I9250-51: o-xylene and m-xylene.

19256-57: 1,1-dichloroethene and tetrachlorethene.

In addition, the detection limit for chloroform was raised due to rinse blank contamination in the following samples I9250 (2.7ug/L) and I9251 (4.7ug/L). The remaining VHO and VAO sample data can be used without further qualification.

5.02 December, 1989 Data Package

The second round of samples was collected between October 15 and 17, 1989 from sub-

surface soil borings and ground water monitoring wells. One hundred thirteen aqueous and soil

samples were collected and analyzed for the purpose of site characterization and assessing the risk

posed by the site. The following discussion is a summary of the qualifications made to the sample

data based on the data validation criteria outlined in Section 3. The specific QA/QC deficiencies

resulting in the qualification of the sample data are contained in Section 4. Rejected sample data

identified during the data validation should not be used for any qualitative or quantitative purposes.

Approximated sample results or detection limits may be used for qualitative purposes or used for

quantitative purposes with proper assumptions so as to not misrepresent the data.

5.02.1 Target Compound Inorganics

The following is a summary of the analytes that were rejected based on the data

validation criteria outlined in Section 4:

Antimony: J3029, J3030.

Lead: J2612, J2615, J2617-23, J2625-27, J3068-69, J3071-85, J3087.

The following samples and analytes were approximated based on the data validation criteria

outlined in Section 4:

Arsenic: J2619.

Cadmium: J2627.

Antimony: J2597, J3031.

Chromium: J2597, J2620.

Lead: J2602, J2604, J2606-09, J2611, J2616, J2624, J3029-31, J3086.

Selenium: J2597, J3030, J3031.

Zinc: J3029-31.

Copper: J3029-J3031.

June 29, 1990

48

NLI 001 **0938** The detection limits for the following analytes and samples were raised due to blank contamination:

Cadmium: J2597, J2622.

Chromium: J2619, J2621-23, J2627.

Arsenic: J2620.

Lead: J3042, J3045, J3058, J3070, J3086, J3090.

The detection limits for the following analytes and samples were changed based on the quarterly documentation of detections presented by the laboratory:

Selenium: J2597.

Lead: J2611.

Arsenic: J2619, J2621-23, J2627.

Chromium: J2621, J2623, J2627.

The remaining target compound list inorganics sample data can be used without further qualification.

5.02.2 Non-CLP Inorganics

Sample data were not rejected for the Non-CLP Inorganics which included, sulfate and chloride. The chloride results can be used without qualification. The only qualification of data made for sulfate sample results was to raise the detection limit of sample J2621 due to rinse blank contamination.

5.02.3 Purgeable Halocarbons and Aromatics

Sample data were not rejected for the purgeable halocarbons and aromatic analyses.

Based on data validation criteria presented in Section 4, the detected compounds in samples

J2628-30 were appoximated. All other sample data can be used without further qualification.

Appendices

APPENDIX A

SITE	
0.0	l

Lab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	Q.C.
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19074
Level (low/med):	Low	Date Received:	8-15-89
% Solids:	0.0		

Concentration Units (μ g/L or mg/kg dry weight): μ g/1

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	2.30			F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	3 % UJ	и	N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide /				
	Sulfate	440000.			G

Color Before: <u>colorless</u>	Clarity Before: <u>clear</u>	Texture:
Color After: pale yellow	Clarity After: clear	Artifacts:
Comments:		

Form I - IN

Lab Name: OBG Labora	itories, Inc.	Contract: <u>2844.014.517</u>	NS
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9075
Level (low/med):	Low	Date Received:	8-15-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				T
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	4.38			F
7440-70-2	Calcium				T
7440-47-3	Chromium				T
7440-48-4	Cobalt				
7440-50-8	Copper		1		T
7439-89-6	Iron				
7439-92-1	Lead	10.4 J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				1
7439-97-6	Mercury				Ī
7440-02-0	Nickel				Ī
7440-09-7	Potassium				T
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				T
	Cyanide				
	Sulfate	200000.			G

Color Before: colorless	Clarity Before: clear	Texture:
Color After: pale yellow	Clarity After: clear	Artifacts:
Comments:	- .	

Form I - IN

7/87

Lab Name: OBG Labo	ratories, Inc.	Contract: 2844.014.517	ND
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19076
Level (low/med):	Low	Date Received:	8-15-89
. C.1::	0 0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	6.50丁		W	F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	14.0 J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	2000000.			G

Color Before:	colorless	Clarity	Before:	clear	Texture:	_
Color After:	pale yellow	Clarity	After:	clear	Artifacts:	
Comments:						
· · · · · · · · · · · · · · · · · · ·						

Form I - IN

7/87

SITE	

Lab Name: CBG Labor	atories, Inc.	Contract: _	2844.014.517	5
Lab Code:	Case No.	SAS	No.:	SDG No.
Matrix (soil/water):	Water		Lab Sample ID:	19077
Level (low/med):	Low		Date Received:	8-15-89
% Solids:	0.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.55寸			F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	12.6J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				!
7440-09-7	Potassium				
7782-49-2	Selenium				T
7440-22-4	Silver				
7440-23-5	Sodium	·			
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	180000.	{		G

Color	Before: _	colorless	Clarity	Before:	<u>clear</u>	Texture:	-
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts: _	-
Commer	nts:	-			-		

Form I - IN

	SITE	
- 1		
	6	

Lab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	6
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19078
Level (low/med):	Low	Date Received:	8-15-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				\Box
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	2.04J			F
7440-70-2	Calcium				
7440-47-3	Chromium				<u> </u>
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	9.8 J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	240000.			G

Color Before:	colorless	Clarity	Before:	clear	 Texture: _	-
Color After:	pale yellow	Clarity	After:	clear	Artifacts:	
Comments:						

Form I - IN

	INORU	WIC ANALISIS DATA SHEET	
Lab Name: OBG Labora	atories, Inc.	Contract: 2844.014.517	MS
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19079
Level (low/med):	Low	Date Received:	8-15-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	16.()			P
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	219.]		Е	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				7
	'				

Color Before:	colorless	Clarity Before: _	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:	140.	. -			

Form I - IN

7/87

ab Name: OBG Labor	ratories, Inc.	Contract: 2844.014.517	2R2
ab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19080
evel (low/med):	Low	Date Received:	8-15-89
Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{\mu g/1}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	18200.			F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	10. VJ	μ	W	F
7440-70-2	Calcium			1	
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	3 2 15	Ц	W,N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				\perp
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium		1		
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	5800000.			G

Color	Before: _	colorless	Clarity	Before:	clear	Texture:	
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts:	
Commer	its:	-					
				٠.			

Form I - IN

SITE

Lab Name: CBG Labor	atories, Inc.	Contract:	2844.014.517	MD
Lab Code:	Case No	SAS	No.:	SDG No.
Matrix (soil/water):	Water		Lab Sample ID:	19081
Level (low/med):	Low		Date Received:	8-15-89
% Solids:	0.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	1. U	μ		F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	8.36.T			F
7440-70-2	Calcium				
7440-47-3	Chromium			1	
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	15 \$. UJ	μ	W,N	F
7439-95-4	Magnesium	•			
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium		Г		
7440-62-2	Vanadium				T -
7440-66-6	Zinc				
	Cyanide				Ţ
	Sulfate	570000.			G

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	pale vellow	Clarity After:	clear	Artifacts:
Comments:	- -	-		
			·.	

Form I - IN

 SITE	

			INIC ANALISIS DA				
Lab Name: OBG L	aboratories,	Inc.	Contract: 2	844.	014.517	_	McCourt #9
Lab Code:		Case No.	SAS N	io.:			SDG No.
Matrix (soil/wate	r): Water	-		Lab	Sample	ID:	19082
Level (low/med):	Low	_		Dat	e Rece	ived: _	8-15-89
% Solids:	0.0	-					
	Concent	ration Unit	s (μg/L or mg/kg	g dr	y weigh	t):	μg/1
	CAS No.	Analyte	Concentration	c	Q	М	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-02-0 7440-23-5 7440-28-0 7440-66-6	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium	31.05		W,N	F	
Color Before:	colorless	Clarity	Before: <u>clear</u>			Text	ıre:
Color After:	pale yellow	Clarity	After: <u>clear</u>	•		Artif	acts:
Comments:							

Form I - IN

Lab Name: OBG Labora	tories, Inc.	Contract:	LD
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Water	Lab Sample ID:	19083
Level (low/med):	Low	Date Received:	8-15-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.87丁			F
7440-70-2	Calcium				
7440-47-3	Chromium			!	
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	24.3 J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	41000.			G

Color Before:	coloriess	Clarity Before:	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	-
Comments:	-	_			

Form I - IN

7/87

SITE	

-			Contract: 28				Rinse Blan
b Code:		Case No	SAS N	0.:			SDG No.
trix (soil/wate	r): Water	-		Lat	Sample	ID:	19084
evel (low/med):	Low	_		Dat	e Recei	ved:	8-15-89
Solids:	0.0	-					
	Concent	ration Unit	s (µg/L or mg/kg	, dr	v weigh:	+)•	11σ / 1
		I delon onle	γ (μg/ μ οτg/ κε	,	, heigh	-	7
	CAS No.	Analyte	Concentration	С	Q	М	
:	7429-90-5	Aluminum					
	7440-36-0	Antimony	3. UJ	μ	W	F	
	7440-38-2	Arsenic	1. U	μ		F	
	7440-39-3	Barium					
	7440-41-7	1					
	7440-43-9	Cadmium	1. UT	μ		F	
	7440-70-2	Calcium					
	7440-47-3	Chromium	2% R			P	
	7440-48-4	i			*****		
	7440-50-8	Copper	8. U	В	*	P	
	7439-89-6	Iron					
	7439-92-1	Lead	2 1/1	μ	W	F	
	7439-95-4	Magnesium				+	
	7439-96-5	Manganese			***************************************		
	7439-97-6	Mercury	`				
	7440-02-0		15. J	μ	N,*	P	
	7440-09-7	•					
	7782-49-2	i		i			
	7440-22-4						ŀ
	7440-23-5	Sodium			·	- 	
	7440-28-0	Thallium					
	7440-62-2	Vanadium			''' 	_	
	7440-66-6	Zinc		\vdash		+	
		Cyanide				_	
			1000. ()			G	1

Color	Before:	colorless	Clarity Befor	e: clear	Texture:	-
Color	After:	pale yellow	Clarity After	: clear	Artifacts:	
Comme	nts:	w.				

Form I - IN

	70	
Ĺ	3R	
SDO	3 No.	

SITE

Lab Code: ____ SAS No.: ____

Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517

Matrix (soil/water): Water

Lab Sample ID: 19085

Level (low/med): Low

Date Received: 8-15-89

% Solids:

0.0

Concentration Units (µg/L or mg/kg dry weight): µg/1

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	7.51J			F
7440-70-2	Calcium				
7440-47-3	Chromium				1
7440-48-4	Cobalt				
7440-50-8	Copper				1
7439-89-6	Iron				
7439-92-1	Lead	7.0丁		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	77000.			G

Color Before: _	colorless	Clarity	Before:	clear	Texture:	-
Color After: _	pale vellow	Clarity	After:	clear	Artifacts:	•
Comments:	-					

Form I - IN

	INORG	1 ANIC ANALYSIS DA	TA SHEET	SITE	
ab Name:GBG Labora	tories, Inc.	Contract: 2	844.014.517	4R	
ab Code:	Case No	SAS N	o.:	SDG No.	
Matrix (soil/water): _	Water		Lab Sample ID:	I9086	
evel (low/med):	Low		Date Received:	8-15-89	

0.0

% Solids:

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{\mu g/1}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium			Ì	
7440-41-7	Beryllium				
7440-43-9	Cadmium	15. (/			l P
7440-70-2	Calcium				
7440-47-3	Chromium			t	
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	11.1 J		N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	190000.			G

Color	Before: _	colorless	Clarity Before:	clear	Texture:	
Color	After: _	pale yellow	Clarity After:	clear	Artifacts: _	•
Comme	its:	-	_			

Form I - IN

SITE	

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	Primary B
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	water	Lab Sample ID:	I9175
Level (low/med):	low	Date Received:	8-16-89
% Solids:	0.0		

Concentration Units (μ g/L or mg/kg dry weight): μ g/1

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	20.0	μ_	*	P
7440-36-0	Antimony	108.R		*	P
7440-38-2	Arsenic	972. 丁		*	F
7440-39-3	Barium	30. R	В	*	P
7440-41-7	Beryllium	1. U	μ		P
7440-43-9	Cadmium	2. ()	μ		P
7440-70-2	Calcium	274000.丁		*	P
7440-47-3	Chromium	17. R		*	P
7440-48-4	Cobalt	\$6.80	В		P
7440-50-8	Copper	8. R	μ	*	P
7439-89-6	Iron	57200.		E	P
7439-92-1	Lead	254.J			F
7439-95-4	Magnesium	96900.			P
7439-96-5	Manganese	8620.		*	P
7439-97-6	Mercury	2. U	μ		CV
7440-02-0	Nickel	40. リナ		N,*	P
7440-09-7	Potassium	26500.丁		*,E	P
7782-49-2	Selenium	20. R	μ	W, M,N	F
7440-22-4	Silver	2. U	μ		P
7440-23-5	Sodium	3330000. P		*	P
7440-28-0	Thallium	3,8. UT	μ	W	F
7440-62-2	Vanadium	16. U	В		P
7440-66-6	Zinc	12. J	В	*	P
	Cyanide	10. V	μ		C

Color Before: yellow	Clarity Bef	ore: <u>cloudy</u>	Texture:
Color After: pale yell	ow Clarity Aft	er: clear	Artifacts:
Comments:			

Form I - IN

7/8.7

S	Ι	T	E

Lab Name: OBG Labor	ratories, Inc.	Contract: 2844.014.517	Primary A
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	water	Lab Sample ID:	I9176
Level (low/med):	low	Date Received:	8-16-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/l$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	_82500. R		*	P
7440-36-0	Antimony	82700. R		*	P
7440-38-2	Arsenic	218000. 丁		*	F
7440-39-3	Barium	492. R		*	P
7440-41-7	Beryllium	18.			P
7440-43-9	Cadmium	20. U	μ		P
7440-70-2	Calcium	61300. 丁		*	P
7440-47-3	Chromium	3470. R		*	P
7440-48-4	Cobalt	151.			P
7440-50-8	Copper	154.R		*	P
7439-89-6	Iron	271000.		E	P
7439-92-1	Lead	-10. R	μ	E	F
7439-95-4	Magnesium	12400.			P
7439-96-5	Manganese	5570.		*	P
7439-97-6	Mercury	2. U	μ		CV
7440-02-0	Nickel	795.丁		N,*	P
7440-09-7	Potassium	87900. 丁		*,E	Р
7782-49-2	Selenium	70. R		N,W	F
7440-22-4	Silver	102.			P
7440-23-5	Sodium	34 00000 0. R		*	P
7440-28-0	Thallium	50. V	μ	W	F
7440-62-2	Vanadium	40400.			P
7440-66-6	Zinc	752. J		*	P
	Cyanide	10. U	ш		С
	TOC	3400000. ゴ			G

Color After: Brown Clarity After: Cloudy Artifacts:	
Comments:	

Form I - IN

	3115	<u>. </u>
ĺ		
İ		
ŀ		
]		

Lab Name: OBG Labora	atories, Inc.	Contract: 2844.014.517	Secondary B
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	water	Lab Sample ID:	19177
Level (low/med):	low	Date Received:	8-16-89
% Solids:	0.0		

Concentration Units (µg/L or mg/kg dry weight): µg/l

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	9630, R		*	P
7440-36-0	Antimony	63. R		*	P
7440-38-2	Arsenic	24.7		*	F
7440-39-3	Barium	25. R	В	*	P
7440-41-7	Beryllium	1.	В		P
7440-43-9	Cadmium	4.	В		P
7440-70-2	Calcium	201000. J		*	P
7440-47-3	Chromium	35. R		*	P
7440-48-4	Cobalt	35	В		P
7440-50-8	Copper	ع بحو		*	P
7439-89-6	Iron	153000.		E	P
7439-92-1	Lead	20. R	μ	E	F
7439-95-4	Magnesium	84300.			P
7439-96-5	Manganese	7230.		*	P
7439-97-6	Mercury	0.20	μ		CV
7440-02-0	Nickel	72.丁		N,*	P
7440-09-7	Potassium	14500.J		*,E	P
7782-49-2	Selenium	10. R	μ	W,N	F
7440-22-4	Silver	12. U			P
7440-23-5	Sodium	1260000. R		*	P
7440-28-0	Thallium	3050.VJ	μ		F
7440-62-2	Vanadium	7. U	В		P
7440-66-6	Zinc	1810. J		*	P
	Cyanide	10. U	ц		С
	TOC	77000. J			G

Color	Before:	vellow	Clarity	Before:	<u>turbid</u>	Texture:	-
Color	After:	pale yellow	Clarity	After:	clear	Artifacts:	
Commen	its:						
					······································		

Form I - IN

	2.voltor.	NIC ANALIOIS DATA SHEET	
ab Name: OBG Labor	ratories, Inc.	Contract:2844.014.517_	PW-4
ab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	<u> 19178</u>
<pre>.evel (low/med):</pre>	Low	Date Received:	8-16-89
Solids:	0.0		
	Concentration Units	; (μg/L or mg/kg dry weight):	1

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.1/1	μ		F
7440-70-2	Calcium			1	
7440-47-3	Chromium				
7440-48-4	Cobalt		1		
7440-50-8	Copper	•	•		
7439-89-6	Iron				
7439-92-1	Lead	3 * VJ	μ	W,N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				1
	Cyanide				
	,				

Color	Before:	colorless	Clarity	Before:	clear	Texture:	. •
Color	After:	pale yellow	Clarity	After:	clear	Artifacts:	-
Commer	its:						
				· · · · · · · · · · · · · · · · · · ·			
				······································			

Form I - IN

ab Name:	itories, Inc.	Contract: 2844.014.517	PW-5
ab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Water	Lab Sample ID:	I9179
evel (low/med):	Low	Date Received:	8-16-89
Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium			1	
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.03	μ		F
7440-70-2	Calcium				T
7440-47-3	Chromium				T
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	3 1 1/1	μ	N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				Ī
7439-97-6	Mercury				
7440-02-0	Nickel				T
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				T-
7440-62-2	Vanadium				\top
7440-66-6	Zinc				
	Cyanide				
	1				

Color Before:	colorless	Clarity Before:	clear	Texture:	-
Color After:	pale yellow	Clarity After:	clear	Artifacts:	-
Comments:		-			

Form I - IN

7/87

Lab Name: OBG Laborator	ies, Inc.	Contract: 2844.014.517	1R
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): Wa	ter	Lab Sample ID:	I9180
Level (low/med): Lo	w	Date Received:	8-16-89

% Solids:

0.0

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	2.90J	Ī		F
7440-70-2	Calcium		1		
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	15 % 15	μ	W.N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				\top
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				T
	Sulfate	2300000. 丁			G

Color Befor	re: colorless	Clarity Before:	clear	Texture:	-
Color After	r: pale yellow	Clarity After:	clear	Artifacts:	-
Comments:	***				

Form I - IN

7/87

S	Į	T	Έ
	-	-	_

b Code:		Case No.	SAS N	o.:		Si	DG No.
trix (soil/wate	r): Water			La	Sample	ID: _I	9181
vel (low/med):	Low			Da	te Recei	ived: 8	-16-89
Solids:	0.0	<u>-</u> ·					
	Concent	ration Unit	s (μg/L or mg/kg	g dr	y weigh	t): <u>μ</u>	g/l
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum				 	
	7440-36-0	Antimony					
	7440-38-2	Arsenic					
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9	Cadmium	23.			<u> </u>	
	7440-70-2	Calcium					
	7440-47-3 7440-48-4	Chromium					
	7440-48-4	Cobalt	12. ()	В	*	P	
•	7439-89-6	Copper Iron	12.0	<u> </u>		- P	
	7439-93-0	Lead	8. R	и	Е	F	
	7439-95-4	Magnesium		-	_ =	 	
	7439-96-5	Manganese					
	7439-97-6	Mercury				 	
· ·	7440-02-0	Nickel				 	
	7440-09-7	Potassium					
	7782-49-2	Selenium					
	7440-22-4	Silver					
	7440-23-5	Sodium					
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
	·	Cyanide					
Į		Sulfate	490000. ブ	!		G	
lor Before: <u>co</u>	lorless	Clarity	Before: clear			Textur	e:
lor After: <u>pa</u>	le yellow	Clarity	After: <u>clear</u>		anguil ^a	Artifa	cts:
mments:			-				

Form I - IN

		INORGA	NIC ANAL	1 YSIS DA	TA S	HEET		SITE
ab Name: 580	Laboratories,	Inc.	Contra	ct: _2	844.	014.517	7	12
.ab Code:		Case No.		SAS N	o.:			SDG No.
Matrix (soil/wa	iter): Water	<u>:</u>			Lab	Sample	ID:	I9182
.evel (low/med)): Low	-			Dat	e Recei	.ved: _	8-16-89
Solids:	0.0	-						
	Concent	ration Unit	s (µg/L o	or mg/kg	g dry	/ weigh	t):	μ g /1
	CAS No.	Analyte	Concent	ration	С	Q	М	
	7429-90-5	Aluminum		· · · · · · · · · · · · · · · · · · ·				
	7440-36-0	Antimony	·		-			
	7440-38-2	Arsenic						
	1	Barium						
	7440-41-7			· · · · · · · · · · · · · · · · · · ·				
	7440-43-9	Cadmium		1. 1)5	u		F	
	7440-70-2							
	7440-47-3		i ————		T			
	7440-48-4				T			
	7440-50-8	Copper						
	7439-89-6	Iron						
	7439-92-1	Lead	3	とび	μ	W,N	F	
	7439-95-4	Magnesium						
	7439-96-5	Manganese						
	7439-97-6	Mercury						
	7440-02-0	Nickel						
	7440-09-7	Potassium			1			
	7782-49-2	Selenium						
	7440-22-4	Silver						
	7440-23-5	Sodium						
	7440-28-0	Thallium						
	7440-62-2	Vanadium			 			
	7440-66-6	Zinc	l ———		\vdash			
		Cyanide		100 /	 , 		$+_{G}$	
	1	Sulfate	1 10	ZV.000	μΙ		<u> </u>	1
olor Before:	colorless	Clarity	Before:	clear		_	Text	ire:
olor After: _	pale yellow	Clarity	After:	clear			Arti	acts:
-		-						/

Form I - IN

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	Rinse Blank
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9183
Level (low/med):	Low	Date Received:	8-16-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony	3. UT	ш		F
7440-38-2	Arsenic	1. U	μ		F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1/. R	μ		F
7440-70-2	Calcium				
7440-47-3	Chromium	3.0			P
7440-48-4	Cobalt				
7440-50-8	Copper	5. U	μ		P
7439-89-6	Iron				
7439-92-1	Lead	3 1 1/2	μ	N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury	-			
7440-02-0	Nickel	15. U	μ		P
7440-09-7	Potassium			, _	
7782-49-2	Selenium				T
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	1000リゴ	μ		G

Color Before:	colorless	Clarity	Before: _	clear	Texture:	
Color After:	pale vellow	Clarity	After: _	clear	Artifacts:	
Comments:						
			·			

Form I - IN

7/87

SITE	

			Contract: 2				PW-3
ab Code:		Case No.	SAS N	lo.:			SDG No.
atrix (soil/wate	r): <u>Wa</u>	ter		Lab	Sample	e ID: _	I9184
evel (low/med):	Lo	w		Date	e Rece	ived: _	8-16-89
Solids:	0.	0					
	Conc	entration Unit	s (μg/L or mg/kį	g dry	weigh	it):	μ g /1
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-	·5 Aluminum	i	-			
	7429-90-	1					
	7440-36-	,		 			
	7440-39-	i e					
	7440-41-	1		-			
		9 Cadmium	1.03	и	W	F	
	7440-70-						
	7440-47-			 			
İ	7440-48-					_	
	7440-50-	,					
	7439-89-						
	7439-92-	1	3 1.0		N	F	
	7439-95-	3			•••		
	7439-96-	1 -					
	7439-97-	, -					
	7440-02-				- 		
	7440-09-						
	7782-49-	i					
	7440-22-						
	7440-23-	1					
	7440-28-						
İ	7440-62-						
	7440-66-	1					
		_ Cyanide					
					·]
lor Before:	olorless	Clarity	Before: <u>clear</u>		_	Textu	re:
lor After:	ale yell	ow Clarity	After: clear			Artif	acts:
nments:	~		-				

Form I - IN

SĮTE	

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	PW-8
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19185
Level (low/med):	Low	Date Received:	8-16-89
% Solids:	0.0		
·	Concentration Units	s (µg/L or mg/kg dry weight): _	<u>μg/</u> 1

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony			}	
7440-38-2	Arsenic				
7440-39-3	Barium			Ì	
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.0	и		F
7440-70-2	Calcium				
7440-47-3	Chromium			!	
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	3 1/101	и	W,N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel			!	
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
				1	

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
			***	-	

Form I - IN

S	I	Т	E
	Ξ	<u> </u>	Ξ

Lab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	secondary A
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9186
Level (low/med):	Low	Date Received:	8-16-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	5470. R	*		P
7440-36-0	Antimony	2340. R	*		P
7440-38-2	Arsenic	174000.J	*		F
7440-39-3	Barium	30.R	В	*	P
7440-41-7	Beryllium	10. U	μ		P
7440-43-9	Cadmium	20. U	μ		P
7440-70-2	Calcium	11900. J		*	P
7440-47-3	Chromium	185. R		*	P
7440-48-4	Cobalt	50. U	μ		P
7440-50-8	Copper	50. R	μ	*	P
7439-89-6	Iron	16300.		E	P
7439-92-1	Lead	10. R	μ	E	F
7439-95-4	Magnesium	2900.			P
7439-96-5	Manganese	1390.		*	ĪΡ
7439-97-6	Mercury	2. V	μ		CV
7440-02-0	Nickel	688.J		N,*	P
7440-09-7	Potassium	102000. ゴ		*,E	P
7782-49-2	Selenium	22. R		N,W,M	F
7440-22-4	Silver	28. U			P
7440-23-5	Sodium	33900000 . R		*	P
7440-28-0	Thallium	50. UT	ш		F
7440-62-2	Vanadium	32000.		······································	P
7440-66-6	Zinc	919. J		*	P
	Cyanide	10. V	μ		C
	TOC	1600000. ブ			G

Color Before:	black	Clarity	Before:	turbid	Texture:	
Color After:	brown	Clarity	After:	cloudy	Artifacts:	
Comments:	· ·		-		^ .	
	·					· · · · · · · · · · · · · · · · · · ·

Form I - IN

1

	INORG	1 ANIC ANALYSIS DATA SHEET	SITE
Lab Name:	ratories, Inc.	Contract:2844.014.517	PW-2
ab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	<u> 19187</u>
Level (low/med):	Low	Date Received:	8-16-89
Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{\mu g}/1$.

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.	и	W	F
7440-70-2	Calcium				{
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	3 10	и	W.N	F
7439-95-4	Magnesium				
7439-96-5	Manganese				1
7439-97-6	Mercury		1		
7440-02-0	Nickel				
7440-09-7	Potassium		i		1
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	pale yellow	Clarity After:	clear	Artifacts:
Comments:		-		

Form I - IN

SITE	
	- 1
пc	
HS	

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	HS
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19237
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum		 		
7440-36-0	Antimony	91.5 J		N	F
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	6.38丁			F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	4400.			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	69000.			G

Color	Before: _	colorless	Clarity	Before:	clear	Texture:	
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts:	
Commen	its:	~ .					

Form I - IN

-	SITE	
	HD	
SDG	No	

Lab Name: OBG Laborat	cories, Inc.	Contract:	HD
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Water	Lab Sample II	D: <u>19238</u>
Level (low/med):	Low	Date Receive	i: 8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{\mu g/1}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+-
7440-36-0	Antimony	30. VJ	ш	W.N	F
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	379.			P
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	9,4 1/3			·F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
-	Cyanide				
	Sulfate	650000.			G

Color Bef	ore: <u>colorless</u>	Clarity Before:	clear	Texture:	
Color Aft	er: pale yellow	Clarity After:	clear	Artifacts:	
Comments:		-			

 SITE	

		INOKG	ANIC ANALYSIS DA	(TA SI	HEET		
Lab Name: OBG L	aboratories	, Inc.	Contract: 28	44.01	4.517		OD
Lab Code:	****	Case No	SAS N	io.: _			SDG No.
Matrix (soil/wate	r): <u>Water</u>	-		Lab	Sample	ID:	19239
Level (low/med):	Low	_		Date	Recei	ved:	8-17-89
% Solids:	0.0	_					
	Concent	ration Unit	s (µg/L or mg/k	g dry	weigh	t): _	<u>μg/1</u>
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5 7440-36-0	Aluminum Antimony					

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1. 05	μ	W	F
7440-70-2	Calcium				
7440-47-3	Chromium	12T. R		*	P
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	2 k UJ	μ	W	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	980000.			G

Color Befor	e: <u>colorless</u>	Clarity Before:	<u>clear</u>	Texture:	
Color After	pale yellow	Clarity After:	_clear	Artifacts:	
Comments:	-				

Form I - IN

Lab Name: OBG Labor	eatories, Inc.	Contract: 2844.014.517	PD
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19240
Level (low/med):	Low	Date Received:	8-17-89
Solids:	0.0		
			/3

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	3.107		₩,*	F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.16〕			F
7440-70-2	Calcium			i	
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	. 9.8 \)]			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	•			
	Cyanide				
	Sulfate	740000.			G

Color	Before:	colorless	Clarity Before	clear	Texture:	
Color	After:	pale_yellow	Clarity After:	clear	Artifacts:	
Commen	its:	-				
		·				

Form I - IN

7/87

SITE	
חז	

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	ID
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9241
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	2.85J			F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead ·	10.7 U			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	65000.			G

Color	Before: _	colorless	Clarity	Before:	clear	Texture:	
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts:	
Commen	ts:	*		-			

Form I - IN

	INORGA			
Lab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	מו.	
Lab Code:	Case No.	SAS No.:	SDG No.	····
Matrix (soil/water):	<u>Water</u>	Lab Sample ID:	19242	
Level (low/med):	Low	Date Received:	8-17-89	
t Salide.	0.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{ug/1}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	49.			P
7440-70-2	Calcium				
7440-47-3	Chromium	8. R		*	l p
7440-48-4	Cobalt				ĺ
7440-50-8	Copper	52. R		*	Р
7439-89-6	Iron				
7439-92-1	Lead	2.8 J			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	64. J		N.*	Р
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	270000.			G

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:	· · · · · · · · · · · · · · · · · · ·				

Form I - IN

7/87

Lab Name: OBG Labo	ratories, Inc.	Contract: 2844.014.517	KS	
Lab Code:	Case No.	SAS No.:	SDG No.	
Matrix (soil/water):	Water	Lab Sample ID:	19243	_
Level (low/med):	Low	Date Received:	8-17-89	_

% Solids:

0.0

Concentration Units (μ g/L or mg/kg dry weight): μ g/1

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum		\vdash		+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	79.			P
7440-70-2	Calcium				
7440-47-3	Chromium	26. K		*	P
7440-48-4	Cobalt				
7440-50-8	Copper	92. R		*	P
7439-89-6	Iron				
7439-92-1	Lead	2400.丁			P
7439-95-4	Magnesium			,	
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel		T		
7440-09-7	Potassium				
7782-49-2	Selēnium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	1300000.			G

Color	Before:	colorless	Clarity	Before:	clear	Texture:	-
Color	After:	pale yellow	Clarity	After:	clear	Artifacts	:
Commer	its:						

Form I - IN

7/87

ab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	KS Dup
ab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9244
evel (low/med):	Low	Date Received:	8-17-89
. Calida.	0.0		

Concentration Units (μ g/L or mg/kg dry weight): μ g/1

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	78.			Р
7440-70-2	Calcium				
7440-47-3	Chromium	ع بقله		*	P
7440-48-4	Cobalt				
7440-50-8	Copper	91. R		*	P
7439-89-6	Iron				
7439-92-1	Lead	2350.寸			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver			***	
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				1
7440-66-6	Zinc				
	Cyanide				
	Sulfate	1300000.			G

Color Before: <u>colorless</u>	Clarity Before: clear	Texture:
Color After: <u>pale yellow</u>	Clarity After: clear	Artifacts:
Comments:	-	

Form I - IN

7/87

_	SITE	
		· l
ı		l
	VD	ı
	KD	- 1

ab Name: OBG L	aboratories	. Inc.	Contract: 29	A.A.	014 517		
ab Code:							SDG No.
fatrix (soil/wate							19245
	- Nater	-			Jumpic		
Level (low/med):	Low	-		Dat	te Recei	.ved:	8-17-89
Solids:	0.0	_					
	Concent	ration Unit	s (μg/L or mg/kg	g dr	y weigh	t): _	<u>ug/</u> 1
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum					• [
	7440-36-0	Antimony					
	7440-38-2	Arsenic					
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9		113.			P	
	7440-70-2						
	7440-47-3		8T. R		*	l P	
	7440-48-4	Cobalt					
	7440-50-8	Copper	152. R		*	P	
	7439-89-6	Iron					
	7439-92-1	Lead	19.2 丁		_	F	
	7439-95-4						
	7439-96-5						.
4.4	7439-97-6	Mercury					.
	7440-02-0						
	7440-09-7						
	7782-49-2	Selenium					
	7440-22-4	Silver					
	7440-23-5						
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
•		Cyanide					
			2700000.				

Color	Before: _	colorless	Clarity	Before:	clear	Texture:	•
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts:	
Commer	its:	• -					

Form I - IN

Lab Name: OBG Labora	tories, Inc.	Contract:	RS
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Water	Lab Sample ID:	19246
Level (low/med):	Low	Date Received:	8-17-89
Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{ug/1}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1. UJ	ц	W	F
7440-70-2	Calcium				1
7440-47-3	Chromium			!	
7440-48-4	Cobalt				Ī
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	37.60			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	•			T
7440-09-7	Potassium				
7782-49-2	Selenium			!	
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium		1		
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	12000.			G

Color Before:	colorless	Clarity	Before:	clear	Texture:	
Color After:	pale yellow	Clarity	After:	clear	Artifacts:	
Comments:	~					
						_

Form I - IN

7/87

SITE	<u> </u>	
		٦

		1.10803	WIC AMALISIS DA	iia .	onee i		
Lab Name: OBG L	aboratories	, Inc.	Contract: 28	44.0)14.517		RD
Lab Code:		Case No.	SAS N	o.:			SDG No.
Matrix (soil/wate	r): <u>Water</u>			Lai	Sample	ID:	19247
Level (low/med):	Low	_		Dat	te Recei	ved:	8-17-89
% Solids:	0.0	_					
	Concent	ration Unit	s (μg/L or mg/kį	g dr	y weigh	t):	μg/1
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3	Aluminum Antimony Arsenic Barium					
,	7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4	Beryllium Cadmium Calcium Chromium Cobalt	1. 03	μ	W	F	
	7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5	Copper Iron Lead Magnesium Manganese	37.0	μ		F	
	7439-90-3 7439-97-6 7440-02-0 7440-09-7 7782-49-2	Mercury Nickel Potassium					
	7440-22-4 7440-23-5 7440-28-0 7440-62-2	Silver Sodium Thallium Vanadium					
	7440-66-6	Zinc Cyanide Sulfate	32000.			G	
Color Before: <u>co</u>	lorless	Clarity	Before: clear			Text	ure:
Color After:	le yellow	Clarity	After: clear		_	Arti	facts:

Color Before	: <u>colorless</u>	Clarity Before:	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	-
Comments:	-	-			

-Form I - IN

Lab Name: OBG Laborat	tories, Inc.	Contract: 2844.014.517	SS
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	I9248
Level (low/med):	Low	Date Received:	8-17-89
k Salide:	0.0		

Concentration Units (μ g/L or mg/kg dry weight): $\underline{\hspace{0.2cm}}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	5.2 丁			F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	15.4 J			F
7440-70-2	Calcium				
7440-47-3	Chromium	18. R		*	P
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	20 ta U	ш		F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				_
7440-62-2	Vanadium				
7440-66-6	Zinc				<u> </u>
	Cyanide				
	Sulfate	940000.			G

Color Before: colorless	Clarity Before: clear	Texture:
Color After: pale yellow	Clarity After: clear	Artifacts:
Comments:	~	

Form I - IN

7/87

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	BR
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19249
Level (low/med):	Low	Date Received:	8-17-89
e Calida.	0.0		

Concentration Units (μ g/L or mg/kg dry weight): μ g/1

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum			<u> </u>	
7440-36-0	Antimony			1	
7440-38-2	Arsenic			1	
7440-39-3	Barium			i	
7440-41-7	Beryllium			į	
7440-43-9	Cadmium	1. VJ	μ	!	F
7440-70-2	Calcium				
7440-47-3	Chromium			:	
7440-48-4	Cobalt				
7440-50-8	Copper			İ	T
7439-89-6	Iron			Ì	
7439-92-1	Lead	4.9 V		!	F
7439-95-4	Magnesium				
7439-96-5	Manganese			Ì	
7439-97-6	Mercury				
7440-02-0	Nickel	-		1	
7440-09-7	Potassium			t .	
7782-49-2	Selenium			Į.	
7440-22-4	Silver				1
7440-23-5	Sodium				T
7440-28-0	Thallium				
7440-62-2	Vanadium			1	T
7440-66-6	Zinc				T
	Cyanide				
	Sulfate	89000.			G

Color	Before:	colorless	01	arity	Before:	clear	 Texture: _	-
Color	After:	pale yello	<u>w</u> C1	arity	After:	clear	 Artifacts:	•
Commen	ts:							

Form I - IN

7/87

	SITE	
1		İ
1		1
	SD	

Lab Name: OBG Labor	atories, Inc.	Contract: <u>2844.014.517</u>	SD
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19250
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units (µg/L or mg/kg dry weight): ____ug/1

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	963.			P
7440-70-2	Calcium				
7440-47-3	Chromium	1340. R		*	P
7440-48-4	Cobalt				
7440-50-8	Copper	4680. R		*	P
7439-89-6	Iron				
7439-92-1	Lead	8.4 UJ			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	2480. J		N,*	P
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver	37. U			P
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	9690.J		*	P
	Cyanide				
	Sulfate	24000000.			G

Color	Before:	<u>light brown</u>	Clarity	Before:	_clear	Texture:	
Color	After:	pale yellow	Clarity	After:	clear	Artifacts:	
Commen	its:	-					
					•	·	

Form I - IN

	SITE	
	SD-Dup	
SDG	No	

Lab Name: OBG Labora	atories, Inc.	Contract:2844.014.517	SD-Dup
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19251
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	899.			P
7440-70-2	Calcium				
7440-47-3	Chromium	4030. R		*	Р
7440-48-4	Cobalt				
7440-50-8	Copper	4360. R		*	Р
7439-89-6	Iron		į		
7439-92-1	Lead	60.J			F
7439-95-4	Magnesium			•	
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	2310. 圢		N.*	P
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver	34. U			P
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	9110. J		*	P
	Cyanide				
	Sulfate	24000000			G

Color Before: <u>light brown</u> Clarity Before: <u>clear</u> Texture:	
Color After: pale yellow Clarity After: clear Artifacts	3: <u>-</u>
Comments:	

Form I - IN

 SITE	
	1

Lab Name: OBG Laborato	ories, Inc.	Contract: 2844.014.517	CR2
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Mater_	Lab Sample ID:	19252
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1. UJ	μ	W	F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	5.9 ()			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	3000.			G

Color Before: colorless	Clarity Before: clear	Texture:
Color After: <u>pale yello</u> w	Clarity After: clear	Artifacts:
Comments:	-	

Form I - IN

	SITE	
	PW6	
	SDG No.	
١.	T0257	

Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517

Matrix (soil/water): Water

Lab Sample ID: 19253

Level (low/med):

Low

Date Received: 8-17-89

% Solids:

0.0

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic			ł	
7440-39-3	Barium			İ	
7440-41-7	Beryllium				
7440-43-9	Cadmium	1. 05	μ	l	F
7440-70-2	Calcium				
7440-47-3	Chromium			1	
7440-48-4	Cobalt			•	
7440-50-8	Copper			į	
7439-89-6	Iron			1	
7439-92-1	Lead	13.0 ()			F
7439-95-4	Magnesium				
7439-96-5	Manganese				T
7439-97-6	Mercury			l	T
7440-02-0	Nickel				1
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before:	colorless	_ Clarity	Before:	clear	Texture:	
Color	After:	pale yelle	ow Clarity	After:	clear	_ Artifacts:	
Commer	nts:	-	-				
				£			

Form I - IN

 SITE	
PW10	

		11101101	WIC MINDIDIO DA	17.	J114-L 1		
Lab Name: OBG Lab	oratories,	Inc.	Contract: 28	344.	014.517	•	PW10
Lab Code:	_	Case No	SAS N	o.:	-	_	SDG No.
Matrix (soil/water)	: Water	_		Lal	b Sample	ID:	19254
Level (low/med):	Low	<u>.</u>		Da	te Receiv	ed: _	8-17-89
% Solids:	0.0	-					
	Concent	ration Unit	s (µg/L or mg/kg		y weight)):	μg/1
					•		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium			-	
7440-41-7	Beryllium				
7440-43-9	Cadmium	1. R	ц		F
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	103. ()			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	•			
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:		-			

Form I - IN

	SITE	
		1
-		

Lab Name: OBG Labor	atories, Inc.	Contra	ect: <u>2844.014.517</u>	PW7
Lab Code:	Case	No	SAS No.:	SDG No.
Matrix (soil/water):	Water		Lab Sample ID	: 19255
Level (low/med):	Low		Date Received	: 8-17-89
% Solids:	0.0			
	Concentration	n Unite (ug/l	or ma/ka dry waisht).	u v /1

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic			l	
7440-39-3	Barium			1	
7440-41-7	Beryllium				
7440-43-9	Cadmium	7. 8	μ		F
7440-70-2	Calcium				
7440-47-3	Chromium			I	
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	9.9 ()			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				1
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before: _	colorless	Clarity	Before:	clear	Te:	xture:	
Color A	After: _	pale yellow	Clarity	After:	clear	Ar	tifacts:	
Commen	ts:	-						

Form I - IN

SITE	
	1

Lab Name: OBG Labor	ratories, Inc.	Contract: <u>2844.014.517</u>	11
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19256
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		
	Concentration Unit:	s (µg/L or mg/kg dry weight): _	μg/1

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	2.6 丁		W	F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	210.			P
7440-70-2	Calcium				
7440-47-3	Chromium			!	
7440-48-4	Cobalt				
7440-50-8	Copper		1		
7439-89-6	Iron				
7439-92-1	Lead	103.UJ	ш	W	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	140. J		N,*	P
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	1800000.			G

Color	Before:	colorless	Clarity	Before:	clear	Texture:
Color	After:	pale vellow	Clarity	After:	clear	Artifacts:
Commen	its:					

Form I - IN

	9115	
- 1		
į		
į		
1		
i	11-Dup	
1		

Lab Name: OBG Labora	atories, Inc.	Contract: _2844.014.517	11-Dup
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19257
Level (low/med):	Low	Date Received:	8-17-89
% Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	1.0 丁		W	F
7440-39-3	Barium			·	
7440-41-7	Beryllium				
7440-43-9	Cadmium	213.			P
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	105. UJ	μ	W	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	139. 丁		N,*	P
7440-09-7	Potassium			•	
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: colorless	Clarity Before: clear	Texture:
Color After: <u>pale yellow</u>	Clarity After: clear	Artifacts:
Comments:	-	

Form I - IN

Lab Name: <u>DBG Labor</u>	atories, Inc.	Contract: 2844.014.517	9R
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	19380
Level (low/med):	Low	Date Received:	8-18-89
Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/1$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic	·			
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	X.R	μ		F
7440-70-2	Calcium				T
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	3 2.30			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Sulfate	2000. 5	·		G

Color	Before: _	colorless	Clarity	Before:	clear	Texture:	-
Color	After: _	pale yellow	Clarity	After:	clear	Artifacts:	-
Comme	nts:			-		•	
				· · · · · · · · · · · · · · · · · · ·	* .		
	•						

Form I - IN

 SITE	
	1

b Code:		Case No	SAS N	·.:			SDG No.
atrix (soil/wate	r): Water	•		Lai	Sample	• ID: _	I9381
vel (low/med):	Low	-		Dat	e Rece	ived: _	8-18-89
Solids:	0.0	-					
	Concent	ration Unit:	s (μg/L or mg/kį	g dr	y weigh	t):	μ g /1
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum					
	7440-36-0	Antimony		 			
	7440-38-2	Arsenic					
	7440-39-3	Barium				- 	
	7440-41-7	Beryllium				_	
	l 1	Cadmium	41.			P	
	7440-70-2	Calcium					
	7440-47-3	Chromium					
		Cobalt					
	7440-50-8	Copper					
	7439-89-6	Iron					
	7439-92-1	Lead	6.6 UJ		W	F	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					•
* *	7440-02-0	Nickel					
	7440-09-7	Potāssium		i			
ı	7782-49-2	Selenium					
	7440-22-4	Silver					
•	7440-23-5	Sodium					ļ
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-65-6	Zinc					
		Cyanide					
Į.		Sulfate	170000. उ			G	
lor Before:c	olorless	Clarity	Before: clear		_	Textu	re:
lor After: _p	ale yellow	Clarity	After: <u>clear</u>		-	Artif	acts:
uments:	ω.						
						· · · · · · · · · · · · · · · · · · ·	

Form I - IN

 SI	TE	

Lab Name: OBG Lab	ooratories,	Inc.	Contract: 2	844.014	.517	Rinse Blank
Lab Code:	_	Case No	SAS N	io.:		SDG No.
Matrix (soil/water)): Water	-		Lab Sa	mple ID:	19383
Level (low/med):	Low	-		Date R	eceived:	8-18-89
% Solids:	0.0	-				•
	Concent	ration Unit	s (µg/L or mg/kg	g dry we	eight):	μ g /1
(CAS No.	Analyte	Concentration	С	Q M	
	7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	3.4 0		F	
Color Before: <u>col</u>	orless	Clarity	Before: clear		Text	ure:
Color After:pal	e vellow	Clarity	After: <u>clear</u>		Arti	.facts:
Comments:	*					

Form I - IN

 SIT	3
444	0-3"

Lab Name: OBG Lal	boratories	, Inc.	Contract:	2844.014.517	44A 0-3"
Lab Code:	-	Case No	SAS	No.:	SDG No.
Matrix (soil/water): <u>Soil</u>	-		Lab Sample ID:	I9412
Level (low/med):	Low	_		Date Received:	8-21-89
% Solids:	100.	<u>o</u>			•
	Concent	ration Unit	s (μg/L or mg/k	(g dry weight):	mg/kg
	CAS No.	Analyte	Concentration	C Q M	

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium			ļ	
7440-41-7	Beryllium				
7440-43-9	Cadmium			•	
7440-70-2	Calcium			1	
7440-47-3	Chromium			!	1
7440-48-4	Cobalt			ł	
7440-50-8	Copper				
7439-89-6	Iron			İ	ī
7439-92-1	Lead	203. 丁			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury			1	
7440-02-0	Nickel				
7440-09-7	Potassium			l	
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				T
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
					T

Color Before: <u>brown</u>	Clarity Before:	Texture:
Color After: <u>pale yello</u> w	Clarity After:	Artifacts:none
Comments:		

Form I - IN

S	ΙT	E

lah Cada.	•	Coon No	C. C. V					
Lab Code:	_	case No	SAS N	0.:			SDG NO	•
Matrix (soil/wate	r): Soil	_		Lab	Sample	e ID: _	19413	
Level (low/med):	Low	-		Dat	e Rece	ived: _	8-21-8	39
% Solids:	100.0	<u>)</u>						
	Concent	ration Unit	s (μg/L or mg/kį	g dry	/ weigh	t):	mg/kg	
	CAS No.	Analyte	Concentration	С	Q	м		
	7429-90-5	Aluminum		╀				
		Antimony						
	7440-38-2	Arsenic						
	7440-39-3	Barium						
		Beryllium						
,	7440-43-9							
	7440-70-2							
	7440-47-3						İ	
	7440-48-4			1				
	7440-50-8	Copper						
		Iron						
		Lead	31.73	1		<u> </u>		
	7439-95-4	Magnesium						
	7439-96-5	Manganese						
		Mercury		-	,			
	7440-02-0 7440-09-7	Nickel		 				
	7782-49-2							
	7440-22-4			+				
	7440-23-5	Sodium		 				
	7440-28-0	Thallium	-	 			1	
	7440-62-2	Vanadium						
	7440-66-6	Zinc						
		Cyanide					1	
Color Before:	brown	Clarity	Before:		_	Textu	re:	coarse
Color After:	pale yellow	Clarity	After:		_	Artif	acts:	none
Comments:	***		-					

Form I - IN

SITE

b Code:		Case No	SAS N	io.:		SDG No	•
trix (soil/wate	r): Soil	<u> </u>		Lab	Sample	ID:	
rel (low/med):	Low	_		Dat	e Recei	ved: 8-21-	89
olids:	100.0	<u>_</u>					
						•	
	Concent	ration Unit	s (µg/L or mg/k	g dry	weight	t): <u>mg/</u> kg	
	CAS No.	Analyte	Concentration	С	Q	М	2
	7429-90-5	Aluminum					
	7440-36-0	Antimony		++		 	
	7440-38-2	Arsenic		+ +		 	
	Į .	Barium				 	
	7440-41-7	f !		1 1			
	7440-43-9						
	7440-70-2			 			
	7440-47-3			1 1		 	
	7440-48-4			İΤΤ			
	7440-50-8	Copper		1 1			
	7439-89-6	Iron					
	7439-92-1	Lead	23.1J			P	
	7439-95-4	Magnesium		+-+		 	
	7439-96-5	Manganese					
		Mercury					
• 1	7440-02-0	Nickel					
	7440-09-7						
	7782-49-2	i		1 1			
	7440-22-4					 	
	7440-23-5					 	
	7440-28-0	Thallium					
	7440-62-2	Vanadium		1 1			
	7440-66-6	Zinc					
		Cyanide					
		-					
	<i>)</i>	01 1 0 -	D. C				coone
or Before:	brown	Clarity	Before:		-	Texture:	coarse
or After:	pale yellow	Clarity	After:		_	Artifacts:	none
ments:							

Form I - IN

S	I	TE	

						!
Lab Name:SBG	Laboratories	Inc.	Contract:	2844.014.517		44A 12"-18"
Lab Code:		Case No.	SAS N	lo.:		SDG No.
Matrix (soil∵wa	ter): Soil	-		Lab Sample	ID: _	I9415
Level (low/med)	: Low	-		Date Recei	ved: _	8-21-89
% Solids:	100.0	<u>o</u>				
	Concent	ration Unit	s (μg/L or mg/k	g dry weight	:):	mg/kg
	CAS No.	Analyte	Concentration	c Q	М	\ :
	7429-90-5	Aluminum				
	7440-36-0	Antimony				
	7440-38-2	Arsenic				
	7440-39-3			`		
	7440-41-7 7440-43-9					
·	7440-70-2		İ			
	7440-47-3					
	7440-48-4					
	1	Copper			 	
	7439-89-6	Iron			+	
	7439-92-1	Lead	10.7 U		P	
	7439-95-4	Magnesium	10.70			
	l l	Manganese				
	7439-97-6					
	7440-02-0					
	7440-09-7				+-	
	7782-49-2					
	7440-22-4	Silver				
	7440-23-5	Sodium				
	7440-28-0	Thallium		•		
	7440-62-2	Vanadium				
	7440-66-6	Zinc				
		Cyanide				
		<u> </u>	1	<u> </u>		l
Color Before:	brown	Clarity	Before: -		Textu	re: coarse
Color After: _	pale yellow	Clarity	4		Artif	acts: none
Comments:			•••			
Commenes :						
		·		**		

Form I - IN

Lab Name: OBG Laborato	ries, Inc.	Contract: _	2844.014.517	44 6"-12"
Lab Code:	Case No	SAS	No.:	SDG No.
Matrix (soil/water):	Soil_		Lab Sample ID:	19416
Level (low/med):	<u>ow</u>		Date Received:	8-21-89

100.0

% Solids:

Concentration Units (µg/L or mg/kg dry weight): $\underline{\hspace{0.2in}}$ mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				-
7440-36-0	Antimony				
7440-38-2	Arsenic			Ï	
7440-39-3	Barium			,	
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium			i	
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	50.7 ブ			P
7439-95-4	Magnesium				I
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium			İ	1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
4.	Cyanide				
	1				

Color Before:	brown	Clarity Before:	Texture:	coarse
Color After:	rust	Clarity After:	Artifacts:	none
Comments:				

Form I - IN

7/87

S	Ī	T	E
_	•		_

Lab Name:OBG_L	aboratories,	Inc.	Contract: 2	844.	014.517	_	44 12"-18"
Lab Code:		Case No	SAS N	o.:			SDG No.
Matrix (soil/wate	er): Soil	-		Lab	Sample	ID:	I9417
Level (low/med):	Low	_		Dat	e Recei	ved:	8-21-89
% Solids:	100.0	<u>-</u>					
	Concent	ration Units	s (μg/L or mg/kg	g dr	y weight	t):	mg/kg
	CAS No.	Analyte	Concentration	С	Q	М	i
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-02-0 7440-02-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	68.6 丁			P	
Color Before:b	rown	Clarity	Before:		_	Text	ure: <u>coarse</u>
Color After:o	range	Clarity	After:			Arti	facts: <u>none</u>
Comments	160		-				

Form I - IN

S	I	T	Έ	

	ib Code:			Case No.	SAS N	io.:			SDG No.	•
Cas No.	trix (soil/wate	r):	Soil	-		Lab	Sampl	e ID:	I9418	
CAS No.	vel (low/med):		Low	-		Dat	e Rece	ived:	8-21-8	39
CAS No. Analyte Concentration C Q M	Solids:		100.0	_						
7429-90-5			Concent	ration Unit:	s (μg/L or mg/k	g dry	weigh	it):	mg/kg	
7440-36-0		CAS	No.	Analyte	Concentration	С	Q	М		
7440-36-0		742	9-90-5	Aluminum				_		
7440-38-2 Arsenic						1 +				
7440-41-7		744	0-38-2						1	
7440-43-9						1				
7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-02-0 Nickel 7440-22-4 Silver 7440-22-4 Solium 7440-23-5 Sodium 7440-66-6 Zinc Cyanide Texture: coarse				•					1	
7440-47-3 Chromium						1 1				
7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 22.3] P 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Clarity Before:						1 !				
7440-50-8 7439-89-6 1ron 7439-92-1 Lead 22.3 J P 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-23-5 Sodium 7440-62-2 Vanadium Zinc Cyanide Clarity Before:						! !			1	
7439-89-6						1-1				
7439-92-1 Lead 22.3						++				
7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Clarity Before:			L.		22 3 1	+++		i p		
7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Clarity Before: Texture:									ŀ	
7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Clarity Before: Texture:							-	+		
7440-02-0 Nickel				-		1				
7440-09-7 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Clarity Before: Texture:										
7782-49-2 Selenium								1		
7440-22-4 Silver										
7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Cyanide Clarity Before: Texture:										
7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Cyanide Clarity Before: Texture:		744	0-23-5	Sodium						
7440-66-6 Zinc Cyanide Lor Before: Texture: coarse		•		Thallium						
Cyanide Cyanide Texture: coarse										
lor Before: Texture: coarse		744	0-66-6			-				
				Cyanide		-				
	Ţ					.!				
lor After: Artifacts: Artifacts:	lor Before:b	TOWI	1	Clarity	Before:			Text	ıre:	coarse
	lor After:c	0101	less	Clarity	After:		-	Arti:	facts: _	none

Form I - IN

	۲	T	t
٠,	L	1.	Ľ

Lab Code: Matrix (soil/water Level (low/med):			SAS N				SDG No.
	Low	.		Lab	C1.		
Level (low/med):		-	•		Sambie	ID:	19419
	100.0			Date	Recei	ved:	8-21-89
% Solids:		•					
	Concent	ration Units	s (μg/L or mg/kg	g dry	weight	:): _	mg/kg
	CAS No.	Analyte	Concentration	С	Q	М	- :
	7440-43-9 7440-70-2 7440-47-3 7440-48-4	Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	45.3 7			P	
Color Before: <u>bro</u>			Before:				ure: <u>coarse</u>
Comments:	Me		-				

Form I - IN

S	I	Ţ	Έ

b Code:		Case No	SAS N	o.: _		SDG	No
trix (soil/wate	r): Soil	-		Lab	Sampl	e ID: <u>194</u>	20
vel (low/med):	Low	-		Date	e Rece	ived: <u>8-2</u>	1-89
Solids:	100.0	-	·				
	Concent	ration Unit	s (μg/L or mg/kg	g dry	weigh	nt): mg/	<u>(</u> kg
	CAS No.	Analyte	Concentration	C	Q	м	
	8460 00 5						
	7429-90-5	Aluminum		-			
1	7440-36-0	Antimony					
	7440-38-2	Arsenic					
	7440-39-3	Barium		!			
	7440-41-7	•		1			
·	7440-43-9	Cadmium					
	7440-70-2	Calcium					
	7440-47-3	Chromium					
	7440-48-4	Cobalt		!			
	7440-50-8	Copper					
İ	7439-89-6	Iron					
	7439-92-1	Lead	2.91丁	<u> </u>		E_	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury		!			
	7440-02-0	Nickel					
	7440-09-7	Potassium					
j	7782-49-2	Selenium					
	7440-22-4	Silver		ı			
	7440-23-5	Sodium		-		 	
·	7440-28-0	Thallium		-		 	
	7440-62-2 7440-66-6	Vanadium Zinc				- 	
	/ *************************************	Cyanide		 			
		Cyanite		-			
ţ			L				
or Before: _br	own	Clarity	Before:		_	Texture:	COATSE_
or After:pa	le yellow	Clarity	After:		_	Artifact	s: <u>none</u>
	-						
uments:							

Form I - IN

Lab Name: OBG Labora	atories, Inc.	Contract: 2844.014.517	218 24"-30"
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soi1	Lab Sample ID:	I9421
Level (low/med):	Low	Date Received:	8-21-89
% Solids:	100.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium	·			
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	6.01 J		·	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				i
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	brown	Clarity Before:	Texture: <u>coarse</u>
Color After:	pale yellow	Clarity After:	Artifacts: none
Comments:	·	-	
	•		

Form I - IN

7/87

SITE

SITE

Code:		Case No	SAS N	io.: _		SD	G No
rix (soil/wate	r): Soil	_		Lab	Sample	ID: 19	9422
/el (low/med):	Low	_		Date	e Recei	ved: _8-	21-89
Solids:	100.0	<u>-</u>					
	Concent	ration Unit	s (μg/L or mg/kį	g dry	weigh	t): <u>mg</u>	<u>g/</u> kg
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum					
	7440-36-0	Antimony			····	 	
	7440-38-2	Arsenic					
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9	Cadmium					
	7440-70-2	Calcium		ì			
	7440-47-3	Chromium		!			
	1	Cobalt					
	7440-50-8	Copper					
	7439-89-6	Iron					
	7439-92-1	Lead	15.9 ()			P	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel	· · · · · · · · · · · · · · · · · · ·				
	7440-09-7	Potassium		1 1			
		Selenium					
	7440-22-4)					
		Sodium		 			
	7440-28-0	Thallium					
	7440-62-2	Vanadium		 			
	7440-66-6	Zinc		 			
		Cyanide		-	· · · · · · · · · · · · · · · · · · ·		
				<u>'</u>			
or Before: bi	rown	Clarity	Before:		_	Texture	: <u>coarse</u>
or After: pa	ale yellow	Clarity	After: _		-	Artifac	ts: none
ments:							

Form I - IN

SITE

Lab Name: OBG L	aboratories,				220 24"-30"
Lab Code:		Case No	SAS N	lo.:	SDG No.
Matrix (soil/wate	r): Soil	_		Lab Sample	e ID: 19423
Level (low/med):	Low	-		Date Rece	ived: 8-21-89
Solids:	100.0	-			
	Concent	ration Unit:	s (µg/L or mg/kg	g dry weigh	t): mg/kg
	CAS No.	Analyte	Concentration	c q	М
	=150 00 5	-		`	
	7429-90-5 7440-36-0	Aluminum Antimony			
	7440-38-2	Arsenic			
	7440-39-3	Barium			
	7440-41-7	Beryllium			
	7440-43-9	Cadmium			
	7440-70-2	Calcium			
	7440-47-3	Chromium			
	7440-48-4	Cobalt			
	7440-50-8	Copper			
	7439-89-6	Iron			
4	7439-92-1	Lead	51.5 丁		<u>P</u>
	7439-95-4	Magnesium			
	7439-96-5	Manganese			
	7439-97-6	Mercury			
	7440-02-0	Nickel			
	7440-09-7	Potassium		[<u> </u>	
	7782-49-2 7440-22-4	Selenium		 	
	7440-22-4	Silver Sodium			
	7440-23-3	Thallium			
•	7440-62-2	Vanadium			-
	7440-66-6	Zinc			-
		Cyanide			
		,			
olor Before: <u>br</u>	own	Clarity	Before: _		Texture: <u>coarse</u>
olor After: <u>pa</u>	le yellow	Clarity	After:		Artifacts: none
omments:			-		

Form I - IN

SITE

Lab Sample ID: 19424 19	Code:		Case No.	SAS N	··· _			SDG No.
Concentration Units (μg/L or mg/kg dry weight): mg/kg CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-70-2 Calcium 7440-48-4 Cobalt 7440-50-8 Copper 7439-95-1 Lead 7439-95-1 Lead 7439-95-4 Magnesium 7440-09-7 Potassium 7440-09-7 Potassium 7440-23-5 Sodium 7440-23-5 Sodium 7440-23-5 Sodium 7440-23-5 Sodium 7440-23-0 Thallium 7440-66-6 Zinc	rix (soil/wate	r): Soil	-		Lab	Sample	ID: _	19424
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-39-3 Barium 7440-41-7 Beryllium 7440-47-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-48-4 Cobalt 7439-92-1 Lead 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-02-0 Nickel 7440-02-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-28-0 Thallium 7440-66-6 Zinc	<pre>/el (low/med):</pre>	Low			Date	Recei	ived: _	8-21-89
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-48-4 Cobalt 7440-50-8 Copper 7439-99-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-02-4 Silver 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc	Solids:	100.0) 					
7429-90-5 7440-36-0 7440-38-2 7440-39-3 8arium 7440-41-7 8eryllium 7440-47-2 7440-47-3 7440-47-3 7440-48-4 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-22-2 7440-66-6 7439-90-5 7440-22-2 7440-22-0 7440-22-0 7440-23-5 7440-22-0 7440-22-0 7440-66-6		Concen	tration Unit	s (μg/L or mg/kį	g dry	weigh	t):	mg/kg
7440-36-0		CAS No.	Analyte	Concentration	С	Q	м	
7440-36-0		7429-90-5	Aluminum				_	
7440-38-2 Arsenic Barium			•					
7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 Cobalt 7440-50-8 7439-89-6 7439-92-1 7439-95-4 Magnesium 7439-96-5 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 7782-49-2 Selenium 7440-23-5 Sodium 7440-62-2 7440-66-6 Zinc Reculium Cadmium Cadmium Calcium Chromium Cobalt Copper I			Arsenic					İ
7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc					1			
7440-70-2 7440-47-3 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 2946. R P Magnesium 7439-95-4 Magnese Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-66-6 Zinc								
7440-47-3 Chromium			;]
7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc	•		•		<u> </u>			
7440-50-8 Copper			· ·		-			
7439-89-6			1					:
7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc								
7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc					 			i .
7439-96-5 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc							P	
7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 77782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc								
7440-02-0 Nickel								
7440-09-7 Potassium			1		!	· · · · · · · · · · · · · · · · · · ·		
7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc					-			
7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc			1		 			
7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc			L					
7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc			1		 			
7440-62-2 Vanadium 7440-66-6 Zinc							+	
7440-66-6 Zinc							+-	
							_	
			3				+	
			Zinc					
							_	
	or Before: <u>br</u>	own	Clarity	Before:			Textu	re: <u>coarse</u>
or Before: <u>brown</u> Clarity Before: <u>-</u> Texture: <u>coarse</u>	or After: _pa	le yellow	Clarity	After:		•	Artif	acts: <u>none</u>
or Before: brown Clarity Before: - Texture: coarse or After: pale yellow Clarity After: - Artifacts: none	ments:	Min						

Form I - IN

SITE

Lab Code:	,	Case No	SAS N	o.:			SDG No.
Matrix (soil/wate	er): Soil	_		Lab	Sample	ID:	19425
Level (low/med):	Low	-		Dat	e Recei	.ved:	8-21-89
% Solids:	100.0	<u>.</u>					
	Concent	ration Unit	s (μg/L or mg/kį	g dry	y weigh	t): _	<u>mg/</u> kg
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5 7440-36-0	Aluminum Antimony	0.640		*	F	•
	7440-38-2 7440-39-3	Arsenic Barium	2.78()			F	
	7440-41-7	Beryllium					•
	7440-43-9 7440-70-2						
	7440-70-2	Calcium Chromium					• ;
	7440-48-4						-
	7440-50-8	Copper		 			•
	7439-89-6	Iron				-	•
	7439-92-1	Lead	231. J		•	P	,
	7439-95-4	Magnesium					•
	7439-96-5	Manganese					•
	7439-97-6	Mercury					
	7440-02-0	Nickel	<u> </u>				<u>'</u>
	7440-09-7	Potassium					
	7782-49-2	Selenium	0.105	μ	N	F	
	7440-22-4	Silver					_
•	7440-23-5	Sodium					_
	7440-28-0						-
	7440-62-2	Vanadium					
	7440-66-6	Zinc Cyanide		 		4	-

Color	Before: _	brown	Clarity	Before:		Texture:	coarse
Color	After: _	pale yellow	Clarity	After:	-	Artifacts:	none
Commen	its:	-		_			

Form I - IN

~	•	-	-
_	1	- 1	
_	٠		_

b Code:		Case No.	SAS N	io.: _			SDG No.
ıtrix (soil/wa	ter): Soil	-		Lab	Sample	e ID:	19426
evel (low/med)	: Low	-		Date	Recei	ived: _	8-21-89
Solids:	100.0	_			:		
	Concent	ration Units	s (µg/L or mg/kg	g dry	weigh	t):	mg/kg
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum					
	7440-36-0	Antimony		-			
	7440-38-2	Arsenic		 			
	1	Barium	***************************************	 		+	
		Beryllium					
	7440-43-9						
•	7440-70-2						
	7440-47-3			i			
	7440-48-4					+-	
	7440-50-8	Copper		Ti			
	7439-89-6	Iron					
	7439-92-1	Lead	302.J			P	· ·
	7439-95-4	Magnesium					1
	7439-96-5						
	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7	Potassium					
	7782-49-2	Selenium		!			
	7440-22-4						
	7440-23-5						
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
		Cyanide					
				<u> </u>			_
lor Before: _	brown	Clarity	Before:		-	Text	re: coarse
lor After: _	pale yellow	Clarity	After:		-	Arti	facts: <u>none</u>
mments:	***						

Form I - IN

SITE

Lab Name:	ratories, Inc.	Contract: <u>2844.014.517</u>	217 Dup. 12"-18"
Lab Code:	Case No.	SAS No.:	SDG No.
<pre>Matrix (soil/water):</pre>	Soil	Lab Sample ID:	19427
Level (low/med):	Low	Date Received:	8-21-89
% Solids:	100.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	246. R			I P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium			·	
7782-49-2	Selenium		!	······································	
7440-22-4	Silver				
7440-23-5	Sodium	!		·	
7440-28-0	Thallium				1
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide		\Box		
					+

Color	Before: _	brown	Clarity	Before:		Texture:	coarse
Color	After: _	pale vellow	Clarity	After:	-	Artifacts:	none
Commer	its:	-		_			

Form I - IN

S	Ī	T	Ε

 Lab Name:
 OBG Laboratories, Inc.
 Contract: 2844.014.517
 217 Dup. 18"-24"

 Lab Code:
 Case No.
 SAS No.:
 SDG No.

 Matrix (soil/water):
 Soil
 Lab Sample ID: 19428

 Level (low/med):
 Low
 Date Received: 8-21-89

 % Solids:
 100.0

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony	3.00 1/5	ш	W.*	F
7440-38-2	Arsenic	2.04 U			F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	102. Ј			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	0.1 (5)	u	N	F
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				T T
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	-,=====				_

Color Before: <u>brown</u>	Clarity Before: -	Texture: coarse
Color After: <u>pale yellow</u>	Clarity After:	Artifacts: none
Comments:	· · <u>-</u>	

Form I - IN

Lab Name: OBG Labor	ratories, Inc.	Contract: 2844.014.517	217 Dup 24"-30"
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	_Soil	Lab Sample ID:	19429
Level (low/med):	<u>Low</u>	Date Received:	8-21-89
% Solids:	_100_0_		•

Concentration Units ($\mu g/L$ or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium	•			
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	173. J			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				i
7440-28-0	Thallium				T
7440-62-2	Vanadium				1
7440-66-6	Zinc				1
	Cyanide				\top

Color	Before:	brown	Clarity	Before:		Texture:	coarse
Color	After:	pale yellow	Clarity	After:	-	Artifacts:	none
Comme	its:	-					

Form I - IN

SITE

Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	213 18"-24"
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID:	19430
Level (low/med):	Low	Date Received:	8-21-89
% Solids:	100.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				+
7440-36-0	Antimony				T
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				T-
7440-48-4	Cobalt				
7440-50-8	Copper				T
7439-89-6	Iron				
7439-92-1	Lead	891.7			P
7439-95-4	Magnesium				T
7439-96-5	Manganese				
7439-97-6	Mercury				T
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				\top
7440-23-5	Sodium				_
7440-28-0	Thallium				+
7440-62-2	Vanadium				+
7440-66-6	Zinc				+
	Cyanide				+
	-,				_

Color	Before:	brown	Clarity Be	efore:	-	Texture:	coarse
Color	After:	pale yellow	Clarity A	fter:	•	Artifacts:	none
Commer	its:			_			
		~					

Form I - IN

Laboratory Report

CLIENT N	L INDUSTRIES	INC.			OB N	o. <u>2844</u>	.014.517
DESCRIPTION	Pedrickto		Waters				
	TOX Summa	ıry					
DATE COLLECTED	8-15-89	DATE REC'D	8-16-	89	_DATE ANALYZ	ED 8-18	to 8-23, 198
			•		1		1
Descripti	on			Primary	Secondary		•
				A	A		
Samia #				I9185*	70104		
Sample #				19103-	I9186*		
	ANIC HALIDES						
Initial				<2000.U	<2000.U		
Duplica	te Run				<2000.U		
			Walana No.	الأسكان المستعدد	S. San Securit		•
		The state of the s			•		
		one i lai stallena vedia.	the in the second				
		L					
					in the second		
					وعدالانفسا		
						en en en en en en en en en en en en en e	
						e e e	,
			-			the second second second	
						er også ers er er eggigg Til grev i flygt er er eggig	
					الدُّ الدِّدِ وَمُنْكُلُونَ مِثْلُ	and the land of the land of	السامشة ليدر إ.
					UNITS	μ <u>ε</u> /1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Sen I seem	had made the man and the	Fartist No. 646	• • · · · · · · · · · · · · · · · · · ·	· 	

Methodology: Federal Register — 40 CFR, Part 136, October 26, 1984

Units: mg// (ppm) unless otherwise noted

summents: * Elevated detection limits due to the presence of matrix interferences.

Authorized: McAss N. Pattull'
October 16, 1989

OBG Laboratories, Inc., an O'Brien & Gere Limited Company Box 4942 / 1304 Buckley Rd. / Syracuse, NY 13221 / (315) 457-1494

LIENT NL INDUST	RIES, INC.		JOB NO. 2844.014.517
DESCRIPTION Pedr	icktown, NJ - Wate	r	
Well	2R2		
AMPLE NO. 19080 DAT	E COLLECTED 8-14-89	DATE REC'D. 8-15-89	DATE ANALYZED 8-18-89
	ppb		ppb
Benzene	<2.5∪	4-Chlorotoluene	<2.5 ∪
Trichloroethene		Bromobenzene	
Toluene		sec-Butylbenzene	
Tetrachloroethene		1,3,5-Trimethylbenzene	
Ethylbenzene		4-Isopropyitoluene	
p-Xylene		1,2,4-Trimethylbenzene	·
Chlorobenzene		1,4-Dichlorobenzene	
m-Xylene	•	1,3-Dichlorobenzene	
o-Xylene		n-Butyibenzene	
isopropyibenzene		1,2-Dichlorobenzene	
Styrene		Hexachlorobutadiene	
n-Propylbenzene		1,2,4-Trichlorobenzene	
tert-Butylbenzene		Naphthalene	
2-Chiorotoluene		1.2.3-Trichlorobenzene	

Comments: Elevated detection limit due to matrix interference

Authorized: Museu V. / Illeau.

Date: ___October 16, 1989 _

CLIENT NL	INDUSTRIES, INC.			_ JOB NO284	4.014.517
DESCRIPTION	Pedricktown, NJ	- Wate	r		
***************************************	Well MD				
SAMPLE NO 19081	DATE COLLECTED	8-14-89	DATE REC'D. 8-15-89	_ DATE ANALYZED_	8-21-89
		ppb			ppb
Benzene	<	0.5U	4-Chlorotoluene		<0.5 <i>V</i>
Trichloroethene			Bromobenzene		
Toluene			sec-Butylbenzene		
Tetrachloroethene			1,3,5-Trimethylbenzene		
Ethylbenzene			4-Isopropyitoluene		
p-Xylene			1,2,4-Trimethylbenzene		
Chiorobenzene			1,4-Dichlorobenzene		
m-Xylene			1,3-Dichlorobenzene		
o-Xylene			n-Butylbenzene		
Isopropyibenzene			1,2-Dichlorobenzene	•	
Styrene			Hexachlorobutadiene		
n-Propylbenzene			1,2,4-Trichlorobenzene		
tert-Butylbenzene			Naphthalene		
2-Chlorotoluene	-	1	1,2,3-Trichlorobenzene		

Comments:

001

1015

CLIENT NL INDUSTRIES, INC.			JOB NO. 2844.014.517		
DESCRIPTION	Pedricktown NJ - Wate	er			
	Rinse Blank			····	
SAMPLE NO. 19084	DATE COLLECTED 8-14-89	DATE REC'D. 8-15-89	DATE ANALYZED 8-21	-89	
	ppb		ppb		
Benzene	<0.5U	4-Chiorotoluene	<0.5 U		
Trichloroethene		Bromobenzene			
Toluene		sec-Butylbenzene			
Tetrachloroethene		1,3,5-Trimethylbenzene			
Ethylbenzene		4-isopropyitoluene			
p-Xylene		1,2,4-Trimethylbenzene			
Chlorobenzene		1,4-Dichlorobenzene			
m-Xylene		1,3-Dichlorobenzene			
o-Xylene		n-Butylbenzene			
isopropylbenzene		1,2-Dichlorobenzene			
Styrene		Hexachlorobutadiene			
n-Propyibenzene		1,2,4-Trichlorobenzene			
tert-Butylbenzene		Naphthalene			
2-Chiorotoluene	\downarrow	1,2,3-Trichlorobenzene			

Comments:

Authorized: Miche

Date: __ October 16, 1989 _

CLIENT NL INDU	JSTRIES, INC.	JOB N	0. 2844.014.517
DESCRIPTIONP	edricktown, NJ - Wate	er	
00	Trip Blank		
SAMPLE NO	DATE COLLECTED 8-14-89	DATE REC'D. 8-15-89 DATE A	NALYZED 8-21-89
	ррь		ррь
Benzene	<0.5∪	4-Chlorotoluene	<0.5∪
Trichloroethene		Bromobenzene	
Toluene		sec-Butylbenzene	
Tetrachioroethena		1,3,5-Trimethylbenzene	
Ethylbenzene		4-isopropyitoluene	
p-Xylene		1,2,4-Trimethylbenzene	
Chlorobenzene	1	1,4-Dichlorobenzene	
m-Xylene		1,3-Dichlorobenzene	
o-Xylene		n-Butylbenzene	
Isopropyibenzene		1,2-Dichlorobenzene	
Styrene		Hexachlorobutadiene	
n-Propyibenzene		1,2,4-Trichlorobenzene	
tert-Butylbenzene		Naphthalene	
2-Chiorotoiuene	1	1,2,3-Trichlorobenzene	\downarrow
	▼		▼

Comments:

Authorized: Michael N. Vetter

CLIENT NL INDUSTR	IES. INC.	JOB N	0. 2844.014.517
DESCRIPTION Pedri	cktown. NJ - Wate	r	
Well_	SD	Editor - Language 19 (10 40 th consequence of the C	
SAMPLE NO. 19250 DATE	COLLECTED 8-16-89	DATE REC'D. 8-17-89 DATE	NALYZED 8-21-89
	ppb		ppb
Benzene	<0.5U	4-Chiorotoluene	<0.5U
Trichloroethene	\downarrow	Bromobenzene	
Toluene	1.3	sec-Butylbenzene	
Tetrachloroethene	<0.5U	1,3,5-Trimethylbenzene	
Ethylbenzene	0.5	4-isopropyitoluene	
p-Xylene	<0.5U	1,2,4-Trimethylbenzene	·
Chlorobenzene	<0.5∪	1,4-Dichlorobenzene	
m-Xylene	0.9 7	1,3-Dichlorobenzene	
o-Xylene	0.6 7	n-Butylbenzene	
Isopropyibenzene	<0.5 <i>U</i>	1,2-Dichlorobenzene	
Styrene		Hexachlorobutadiene	
n-Propylbenzene		1,2.4-Trichlorobenzene	
tert-Butylbenzene		Naphthalene	
2-Chiorotoiuene		1.2.3.Trichlorohenzene	

Comments:

Authorized: Michael L. Fellewill

Date: ___October 16, 1989

83

CLIENTNL I	NDUSTRIES, INC.		JOB NO284	4.014.517
DESCRIPTION	Pedricktown, NJ - Wate	r		
	Well SD - Duplicate			
SAMPLE NO	DATE COLLECTED 8-16-89	DATE REC'D. 8-17-89	_ DATE ANALYZED	8-21-89
	ррь			ppb
Benzene	<0.50	4-Chiorotoluene		<0.5U
Trichloroethene	· 🗸	Bromobenzene		
Toluene	1.5	sec-Butylbenzene		
Tetrachloroethene	<0.50	1,3,5-Trimethylbenzene		
Ethylbenzene	0.5	4-Isopropyitoluene		
p-Xylene	<0.5U	1,2,4-Trimethylbenzene		
Chiorobenzene	<0.5U	1,4-Dichtorobenzene		
m-Xylene	0.9 J	1,3-Dichlorobenzene		
o-Xylene	0.5]	n-Butylbenzene		
Isopropylbenzene	<0.5U	1,2-Dichlorobenzene		
Styrene		Hexachlorobutadiene		
n-Propyibenzene		1,2,4-Trichlorobenzene		
tert-Butylbenzene		Naphthalene		
2-Chiorotoluene	-	1,2,3-Trichlorobenzene		\downarrow

Comments:

Date: __ October 16, 1989 ... NLI

1019

001

84

CLIENT NL	INDUSTRIES, INC.		JOB NO2844.014.		
DESCRIPTION	Pedricktown, NJ - Wate	r			
	Well 11				
SAMPLE NO	DATE COLLECTED8-16-89	DATE REC'D. 8-17-89	DATE ANALYZED_	8-22-89	
	ррь			ppb	
Benzene	< 5. V	4-Chlorotoluene	•	< 5. U	
Trichloroethene		Bromobenzene			
Toluene	\downarrow	sec-Butylbenzene			
Tetrachioroethene	180. 丁	1,3,5-Trimethylbenzene			
Ethylbenzene	< 5. U	4-isopropyitoluene			
p-Xylene		1,2,4-Trimethylbenzene			
Chlorobenzene		1,4-Dichlorobenzene			
m-Xylene		1,3-Dichlorobenzene			
o-Xylene		n-Butylbenzene			
Isopropyibenzene		1,2-Dichlorobenzene			
Styrene		Hexachlorobutadiene			
n-Propylbenzene	}	1,2,4-Trichlorobenzene			
tert-Butylbenzene		Naphthalene			
2-Chlorotoluene	\downarrow	1,2,3-Trichlorobenzene			

Comments:

Authorized: Mishael W. Petterell

CLIENT NL I	NDUSTRIES, INC.		JOB NO. 2844.014.517
DESCRIPTION	Pedricktown, NJ - Wate:	r	
	Well 11 - Duplicate		
SAMPLE NO. 19257	DATE COLLECTED 8-16-89	_ DATE REC'D8-17-89	DATE ANALYZED 8-22-89
	ppb		ppb
Benzene	<5.∪	4-Chlorotoluene	< 5. U
Trichloroethene		Bromobenzene	
Toluene	↓ _	sec-Butylbenzene	
Tetrachloroethene	180. 7	1,3,5-Trimethylbenzene	
Ethylbenzene	<5. U	4-Isopropyitoluene	
p-Xylene		1,2,4-Trimethylbenzene	
Chlorobenzene		1,4-Dichlorobenzene	
m-Xylene		1,3-Dichlorobenzene	
o-Xylene		n-Butylbenzene	
Isopropylbenzene		1,2-Dichlorobenzene	
Styrene		Hexachlorobutadiene	
n-Propyibenzene		1,2,4-Trichlorobenzene	
tert-Butylbenzene		Naphthalene	
2-Chlorotoluene	£	1,2,3-Trichlorobenzene	

Comments:

Authorized: Minked K. Rettendi

NLI

CLIENT NL	INDUSTRIES, INC.				_JOB NO2	844.014.517
DESCRIPTION	Pedricktown, N.	J - Wate	r			
	Q C Trip Blank					
SAMPLE NO	8 DATE COLLECTED	8-16-89	_ DATE REC'D.	8-17-89	_ DATE ANALYZE	8-22-89
		dqq				ppb
Benzene	•	(0.5U	4-Chiorotoi	uene		<0.5∪
Trichloroethene			Bromoben	zene		Į.
Toluene			sec-Butylbo	enzene		
Tetrachioroethene			1,3,5-Trime	thylbenzene		
Ethylbenzene			4-Isopropy	Itoluene		
p-Xylene			1,2,4-Trime	nthylbenzene		
Chlorobenzene			1,4-Dichlor	obenzene		
m-Xylene			1,3-Dichlor	robenzene		
o-Xylene			n-Butyiben	zene		
Isopropyibenzene			1,2-Dichlor	obenzene		
Styrene			Hexachiord	obutadiene		
n-Propyibenzene			1,2,4-Trich	lorobenzene		L
tert-Butylbenzene			Naphthaler	ne		
2-Chiorotojuene			1.2.3-Trich	lorobenzene		

Comments:

Authorized: Michael & lettert

NLI

001

1022

CLIENT NL INDUSTRI	ES, INC.	JOB NO	2044.014.317
DESCRIPTIONPedric		r	
Well 2			
SAMPLE NO. 19080 DATE	COLLECTED 8-14-89	DATE REC'D. 8-15-89 DATE ANALY	ZED 8-24-89
	ppb	₩ inbloombara	ppb
Chloromethane	<2.5∪	Trichlorethene	<2.5()
Bromomethane		1,3-Dichloropropane	
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane		1,1,1,2-Tetrachioroethane	
1,1-Dichloroethene		1,2,3-Trichloropropane	
Bromochloromethane		1,1,2,2-Tetrachloroethane	
1,1-Dichloroethane		Tetrachloroethene	
trans-1,2,-Dichloroethene		Pentachioroethane	
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform		1,2-Dibromo-3-chlororpropane	1
1,2-Dichloroethane	-	Bromobenzene	
Dibromomethane		2-Chlorotoluene	
1,1,1-Trichioroethane		4-Chiorotoluene	
Carbon tetrachloride		bis-2-Chloroisopropyl ether	
Bromodichloromethane		1,3-Dichlorobenzene	
1,2-Dichloropropane		1,2-Dichlorobenzene	
2.2-Dichloropropane		1,4-Dichlorobenzene	
1,1-Dichloropropene		trans-1,3-Dichloropropene	
	•	cis-1.3-Dichloropropene	\downarrow

Comments: Elevated detection limit due to matrix interference

1023

October 16, 1989

CLIENT NL INDUSTRIES	, INC.		B NO284	44.014.517
DESCRIPTION Pedrick	town, NJ - Wate	r	· · · · · · · · · · · · · · · · · · ·	
Well MD				
SAMPLE NO. 19081 DATE CO	DLLECTED 8-14-89	_ DATE REC'D. <u>8-15-89</u> DA	TE ANALYZED	8-24-89
	ppb			ppb
Chioromethane	<0.5U	Trichlorethene		<0.5U
Bromomethane		1,3-Dichloropropane		
Dichlorodifluoromethane		Dibromochloromethane		
Vinyl chloride		1,1,2-Trichloroethane		
Chloroethane		1,2-Dibromoethane		
Methylene chloride		Bromoform		
Trichlorofluoromethane		1,1,1,2-Tetrachioroethane		
1,1-Dichloroethene		1,2,3-Trichloropropane		
Bromochioromethane		1,1,2,2-Tetrachioroethane		
1,1-Dichloroethane		Tetrachloroethene		
trans-1,2,-Dichloroethene		Pentachioroethane		
cis-1,2-Dichloroethene		Chlorobenzene		
Chloroform		1,2-Dibromo-3-chlororpropane	e	
1,2-Dichloroethane		Bromobenzene		:
Dibromomethane		2-Chiorotoluene		
1.1,1-Trichloroethane		4-Chlorotoluene		
Carbon tetrachloride		bis-2-Chloroisopropyl ether		
Bromodichloromethane		1,3-Dichlorobenzene		
1,2-Dichloropropane		1,2-Dichlorobenzene		
2.2-Dichloropropane		1,4-Dichlorobenzene		
1,1-Dichloropropene		trans-1,3-Dichlorop	ropene	
	•	cis-1,3-Dichloropro	-	

NLI 001 1024

Authorized: Michael W. Petterell

Date: October 16, 1989

CLIENT NL INDUSTR	IES, INC.	JOB NO	2844.014.517
DESCRIPTION Pedri	cktown, NJ - Water		
Rinse	Blank		
SAMPLE NO. 19084 DATE	COLLECTED 8-14-89	DATE REC'D. 8-15-89 DATE ANALY	ZED 8-24-89
			•
	ppb		ppb
Chloromethane	<0.5∪	Trichlorethene	<0.5 U
Bromomethane		1,3-Dichloropropane	
Dichlorodifluoromethane		Dibromochioromethane	3.0
Vinyl chloride		1,1,2-Trichloroethane	<0.5 U
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane		1,1,1,2-Tetrachloroethane	
1,1-Dichloroethene		1,2,3-Trichloropropane	
Bromochloromethane		1,1,2,2-Tetrachioroethane	
1,1-Dichloroethane		Tetrachioroethene	
trans-1,2,-Dichloroethene		Pentachioroethane	
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform	12.6	1,2-Dibromo-3-chlororpropane	·
1,2-Dichloroethane	<0.5 U	Bromobenzene	
Dibromomethane		2-Chlorotoluene	
1.1.1-Trichloroethane		4-Chlorotoluene	
Carbon tetrachloride		bis-2-Chloroisopropyl ether	
Bromodichloromethane	6.3 J	1,3-Dichlorobenzene	
1,2-Dichloropropane	5.6	1,2-Dichloropenzene	
2.2-Dichloropropane	· <0.5U	1,4-Dichlorobenzene	
1,1-Dichloropropene		trans-1,3-Dichloropropene	
· · · · · · · · · · · · · · · · · · ·	V	cis-1,3-Dichloropropene	
		are stanzarahrahana	•

Comments:

NLI 001 1025

Date: ... Qctqber 16, 1989

Comments:

Volatile Organics Method 502

CLIENT NL INDUSTRIES	S. INC.	JOB NO	2844.014.517
DESCRIPTION Pedrickt	own, NJ - Water		
OC Trip	Blank		
SAMPLE NO. 19087 DATE CO	LLECTED 8-14-89	DATE REC'D. 8-15-89 DATE ANAL	YZED 8-24-89
Chioromethane	ppb <0.5∪	Trichlorethene	ppb <0.5∪
Bromomethane	10.30	1,3-Dichloropropane	(0.30
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chioroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane		1,1,1,2-Tetrachloroethane	
1,1-Dichloroethene		1,2,3-Trichloropropane	
Bromochloromethane		1,1,2,2-Tetrachloroethane	
1,1-Dichloroethane		Tetrachloroethene	
trans-1,2,-Dichloroethene		Pentachioroethane	
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform		1,2-Dibromo-3-chlororpropane	
1.2-Dichloroethane		Bromobenzene	
Dibromomethane		2-Chlorotoluene	
1,1,1-Trichloroethane		4-Chlorotoluene	
Carbon tetrachloride		bis-2-Chloroisopropyl ether	
Bromodichloromethane		1,3-Dichlorobenzene	
1,2-Dichloropropane		1,2-Dichlorobenzene	
2.2-Dichloropropane		1,4-Dichlorobenzene	
1,1-Dichloropropene	\downarrow	trans-1,3-Dichloropropene	į
	•	cis-1,3-Dichloropropene	\downarrow

NLI 001 1026

Authorized: //wher / / October 16.

Date: __ October 16, 1989___

CLIENT NL IN	NDUSTRIES, INC.				_JOB NO	2844.014.517
		I - Wate	r			***************************************
	Well SD	0 16 00		0 17 00		9 24 90
SAMPLE NO. 19250	DATE COLLECTED	9-10-03	_ DATE REC'D	0-1/-09	_ DATE ANALYZE	D <u>8-24-89</u>
		ppb				ppb
Chloromethane	•	(0.5U	Trichloreth	ene		<0.5U
Bromomethane			1,3-Dichlor	ropropane		
Dichlorodifluoromethan	•		Dibromoch	loromethane		
Vinyl chloride			1,1,2-Trich	loroethane		
Chloroethane			1,2-Dibrom	noethane		
Methylene chloride			Bromoform	1		
Trichlorofluoromethane			1,1,1,2-Tet	rachioroethane	ə	
1,1-Dichloroethene			1,2,3-Trich	ioropropane		
Bromochloromethane			1,1,2,2-Tet	rachioroethane	9	
1,1-Dichloroethane			Tetrachiore	pethene		
trans-1,2,-Dichloroether	ne		Pentachior	roethane		
cis-1,2-Dichloroethene		\downarrow	Chloroben	zene		
Chloroform		2.7 L	1,2-Dibron	no-3-chiororpro	pane	
1,2-Dichloroethane	•	<0.5 U	Bromoben	zene		
Dibromomethane			2-Chloroto	luene		1
1,1.1-Trichloroethane			4-Chloroto	iuene		·
Carbon tetrachloride			bis-2-Chlor	roisopropyl eth	ier	
Bromodichloromethane	•		1,3-Dichlor	robenzene		
1,2-Dichloropropane			1,2-Dichlor	ropenzene		
2.2-Dichloropropane			1,4-Dichlor	robenzene		·
1,1-Dichloropropene		\downarrow	trans-1	,3-Dichlor	ropropene	
		-	cis-1,3	S-Dichloro	propene	\downarrow

NLI 001 1027

Authorized: Melack V. Petterell

October 16, 1989

CLIENT NL INDUSTRIE		JOB NO	
DESCRIPTIONPedrick	town, NJ - Wate:		
Well SD	Duplicate		
SAMPLE NO. 19251 DATE CO	LLECTED 8-16-89	DATE REC'D. 8-17-89 DATE ANA	LYZED 8-24-89
	ppb		ppb
Chioromethane	<0,5U	Trichlorethene	<0,5∪
Bromomethane		1,3-Dichloropropane	
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane		1,1,1,2-Tetrachloroethane	
1,1-Dichloroethene		1,2,3-Trichloropropane	
Bromochloromethane		1,1,2.2-Tetrachioroethane	
1,1-Dichloroethane		Tetrachioroethene	
trans-1,2,-Dichloroethene		Pentachloroethane	
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform	4.5 U	1,2-Dibromo-3-chlororpropane	
1,2-Dichloroethane	<0.5 ∪	Bromobenzene	
Dibromomethane		2-Chlorotoluene	
1,1,1-Trichloroethane		4-Chiorotoluene	
Carbon tetrachloride		bis-2-Chloroisopropyl ether	
Bromodichloromethane		1,3-Dichlorobenzene	
1,2-Dichloropropane		1,2-Dichlorobenzene	
2.2-Dichloropropane		1,4-Dichlorobenzene	
1.1-Dichloropropene	\downarrow	trans-1,3-Dichloropropene	
	•	cis-1,3-Dichloropropene	

NLI 001 1028

Authorized: Middel V. Patterell

Comments:

Volatile Organics Method 502

CLIENT NL INDUSTR	IES. INC.	JOB NO	2844.014.517
DESCRIPTIONPedri	cktown NJ - Wate		
Well	#11		
SAMPLE NO. 19256 DATE	E COLLECTED 8-16-89	DATE REC'D. 8-17-89 DATE ANALY	ZED 8-24-89
	ppb		ppb
Chioromethane	<50. U	Trichlorethene	< 50. U
Bromomethane		1,3-Dichloropropane	1
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	,
Trichlorofluoromethane	\downarrow	1,1,1.2-Tetrachioroethane	
1,1-Dichloroethene	170. 5	1,2,3-Trichloropropane	
Bromochloromethane	<50.∪	1,1,2,2-Tetrachioroethane	\downarrow
1,1-Dichloroethane	74.	Tetrachloroethene	74.
trans-1,2,-Dichloroethene	<50.U	Pentachloroethane	<50. U
cis-1,2-Dichloroethene		Chiorobenzene	l
Chloroform		1.2-Dibromo-3-chlororpropane	
1.2-Dichloroethane	-	Bromobenzene	
Dibromomethane	. 🗸	2-Chiorotoluene	
1,1,1-Trichloroethane	4700.	4-Chlorotoluene	
Carbon tetrachloride	<500.∪	bis-2-Chloroisopropyl ether	
Bromodichloromethane	<500.∪	1,3-Dichlorobenzene	
1,2-Dichloropropane	<50.∪	1,2-Dichlorobenzene	
2,2-Dichloropropane	İ	1,4-Dichtorobenzene	
1,1-Dichloropropene	\downarrow	trans-1,3-Dichloropropene	
		cis-1,3-Dichloropropene	\checkmark

NLI 001 1029

Comments:

Volatile Organics Method 502

CLIENT NL INDI	USTRIES. INC.	JOB NO	2844.014.517
DESCRIPTION P	edricktown, NJ - Wate	P	
W	ell #11 Duplicate		
SAMPLE NO. <u>19257</u>	DATE COLLECTED 8-16-89	DATE REC'D. 8-17-89 DATE ANALY	ZED 8-24-89
	ppb		ррб
Chloromethane	<50.∪	Trichlorethene	< 50. U
Bromomethane		1,3-Dichloropropane	
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane	\downarrow	1,1,1,2-Tetrachioroethane	
1,1-Dichloroethene	150. ブ	1,2,3-Trichloropropane	
Bromochloromethane ·	<50.U	1,1,2,2-Tetrachioroethane	↓ ·
1,1-Dichloroethane	70.	Tetrachloroethene	69.
trans-1,2,-Dichloroethene	< 50. U	Pentachloroethane	<50.U
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform		1,2-Dibromo-3-chlororpropane	
1,2-Dichloroethane		Bromobenzene	
Dibromomethane	1	2-Chlorotoluene	
1,1,1-Trichloroethane	4700.	4-Chlorotoluene	
Carbon tetrachloride	<500.∪	bis-2-Chloroisopropyl ether	
Bromodichloromethane	< 500. ()	1,3-Dichlorobenzene	
1,2-Dichloropropane	<50.U	1,2-Dichlorobenzene	
2.2-Dichloropropane		1,4-Dichlorobenzene	
1,1-Dichloropropene		trans-1,3-Dichloropropene	
	•	cis-1.3-Dichloropropene	\downarrow

NLI 001 1030

Authorized: Justin 10. PD Cu

CLIENT NL INDUSTRIE	S, INC.	JOB NO	2844.014,517
DESCRIPTION Pedrick	town, NJ - Wate:	r	
QC Trip	Blank		
SAMPLE NO. 19258 DATE C	OLLECTED <u>8-16-89</u>	DATE REC'D. 8-17-89 DATE ANAL	YZED <u>8-24-89</u>
	ppb		ppb
Chloromethane	<0.5U	Trichlorethene	<0.5 U
Bromomethane		1,3-Dichloropropane	
Dichlorodifluoromethane		Dibromochloromethane	
Vinyl chloride		1,1,2-Trichloroethane	
Chloroethane		1,2-Dibromoethane	
Methylene chloride		Bromoform	
Trichlorofluoromethane		1,1,1,2-Tetrachloroethane	
1,1-Dichloroethene		1,2,3-Trichloropropane	
Bromochloromethane		1,1,2,2-Tetrachloroethane	
1,1-Dichloroethane		Tetrachloroethene	
trans-1,2,-Dichloroethene		Pentachloroethane	
cis-1,2-Dichloroethene		Chlorobenzene	
Chloroform		1,2-Dibromo-3-chlororpropane	
1,2-Dichloroethane		Bromobenzene	
Dibromomethane		2-Chlorotoluene	
1,1,1-Trichloroethane		4-Chioratoluene	
Carbon tetrachloride	•	bis-2-Chloroisopropyl ether	
Bromodichloromethane		1,3-Dichlorobenzene	
1,2-Dichloropropane		1,2-Dichlorobenzene	
2.2-Dichloropropane		1,4-Dichlorobenzene	
1,1-Dichloropropene		trans-1,3-Dichloropropene	
	•	cis-1,3-Dichloropropene	

Comments:

NLI 001 1031

Authorized: Michal N. Peller

Date: October 16, 1989

IA UOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SHIPLE NO.

Primary B

ab Name: OBG Laboratories, Inc.

Contract: 2844, 014, 917 |

Code: -

Case No.: -

SAS No.: -

SDG No .: -

strix: (soil/water) WATER

Lab Sample ID: I9175DL

...ple wt/vol: 5 (g/mL) mL

Lab File ID: >03011

(low/med) LOW

Date Received: 08/16/89

Moisture: not dec.100

Date Analyzed: 08/24/89

umn: (pack/cap) PACK

Dilution Factor: 18

CONCENTRATION UNITS:

	CAS NO.	COMPOUND (ug/L or a	ug/Kg· ug/L	C
1			1	···········
ŧ	74-87-3	Thioromethane	: 100.U II	10 1
1	74-83-9	Bromomethane		J D 1
1	フラーひ1ー4ーーー	Vinvl Chloride	! 106.U ii	ו כו
ł	75-00-3	Chioroethane		ו סנ
ŧ	フラー09ー2	Methylene_Chloride	50 15.0 l	
ı	67-64-1	Acetone Carbon Disulfide	100.U	J (0) H
ţ	75-15-0	Carbon Disulfide	50.U II	J 👌 🗎
Į	75-35-4	1,1-Dichloroethene	i 50.U II	ו כו ע
1	75-34-3	l,1-Dichloroethane	50.U II	ו פ'נ
į	540-59-0	1.2-Dichloroethene_(total)	. 50.U II	ו סו
ı	07-66-3	Chloroform	50.U I	
1	107-02-2	1,2-Dichloroethane	50.0 1	
i	78-93-3	2-Butanone		
i		1,1,1-Trichloroethane		
į	56-23-5	Carbon Tetrachloride	50.V II	J.D.
i	108-05-4	Vinyl Acetate	100.V	
i	75-27-4	Bromodichloromethane	50.0	J D I
1	78-87-5	1,2-Dichloropropane		ו סו
ì	10061-01-5-	cis-1,3-Dichloropropene		
ì	79-01-4	Trichloroethene	Ti śč.V ii	ו סו
	124-48-1	Dibromochloromethane	50.V	י יי ו כינ
i		1,1,2-Trichloroethane		ו סו
į	71-43-2	name Renzene		
i	10041-02-4-	Benzenetrans-1,3-Dichloropropene	i	و ز
i	75-25-2		50.U II	
:	109-10-1	Bromoform 4-Methyl-2-pentanone		י טונ ו סונ
1	E91_70_4	2-Hevases	100.V ii	ו פנ
	107 10 4	2-Hexanone	50.U	י כנ וכנ
•	14/-15-4	Tetrachloroethene		
1	100 00 7	1,1,2,2-Tetrachloroethane_		וְ קַּיוּנ
1	190-00-7	Toluene		j Ç
1	100-70-/	Chioropenzene	= 50.V	ا ٿان
1	700		'	15
	<u> </u>	Styrene	_ 50.V	
İ	125-82-7	Kylene (total)	・ 50.レーバ	j Ç :

EPA SAMPLE NO.

191	75	D	

	ENTATIVELY IDENTIFIED COMPOUN		139775	D
Lab Name: OBG LAB	ORATORIES, INC. Contract:	3844. ON.	20 1	
Lab Code:	Case No.: SAS No.:		SDG No.:	-
Matrix: (soil/wat	E) WATER	Lab Sample	D: <u>T9775</u>	D
Sample wt/vol:	5.0 (g/ml) ML	Lab File 1	D: <u>>V3011</u>	
tevel: (low/med)	las	Data Recei	ived: 08/14/89	-
* Moisture: not de	<u>c. 100</u>	Date Analy	red: <u>08/aule</u>	<u> </u>
mple wt/vol: 5.0 (g/mL) MC Lab File ID: >V30 wel: (Low/med) Low Data Received: 08 u 89 Moisture: not dec. 00 Data Analyzed: 08 u 89 plumn: (pack/cap) Ack Dilution Factor: D concentration units: (ug/L or ug/Kq) Lo CAS NUMBER COMPOUND NAME ET EST. CONC. Q 1.				
	Case No.: SAS No.: SDG No.: Eab Sample ID: T91757 5.0 (g/mL) ML Lab File ID: >V3011 Date Received: 08/u/89 Date Analyzed: 08/av/89 Dilution Factor: 10 CONCENTRATION UNITS: (ug/L or ug/Kg) 1/0/L			
Number TICs found	i: O - CONCEN			
		3,3, 1		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
2. 3.				
4	-			
6				
7				
9.		-		
10				
11.		[]		
13				
14				
16-				
16-				
17-				
17-				
17. 18. 19.				

1033 001 NLI

1A UDLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 TET & BLASSER

Name: OBG Laboratories, Inc.

Contract:2844.014.517 |

sb Code: -

Case No.: -

SAS No.: -

SDG No .: -

: rix: (soil/water) WATER

Lab Sample ID: 19188

ample wt/vol:

5 (g/mL) mL

Lab File ID: ///3014

: el: (low/med) LOW

Date Received: 08/15/89

"bisture: not dec.100

Date Analyzed: 08/24/89

slumn: (pack/cap) PACK

Dilution Factor: 1.0

Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene_Chloride_	! 10 ! 10	ו ל. (טו ל. (טו ל. (
Bromomethane Vinyl Chloride Chloroethane Methylene Chloride	! 10 ! 10	
Vinyl Chloride Chloroethane Methylene Chloride	i 10	1.U 1U
Chloroethane	1 10	, , , , , , , , , , , , , , , , , , ,
Methylene Chloride).U IU
	i	F.U 1U
Acetone		נו לני
Carbon Disulfide		.V IU
1.1-Dichincoethene	, j	10
1,1-Dichloroethane		
i.2-Dichloroethene	itotal) i 9	เง้าเบ
Chloroform		יו ט
1.2-Dichlorgethane	ii	ะ.ง เม
2-Butanone	1 10	עו ע.נ
1.1.1-Trichloroetha	ne	้.บั
Carbon Tetrachlorid		.U iu
Uinul Acetate	1.0	
Bromodichloromethan		טו ט.
1.2-Dichleropropane		LU U.
cis-1.3-Dichloropro	Dane	נו ע.
Trich large thene		וו עו
Dibromochlocomethan		5.U U
1 1 2-Trichloroetha	200	נו ט.
		. V
teans-1 3-Dichioson	200000	.V III
		LU ILI
4-Methyl-2-pentanon	10	•••
	***	טו טו
Tetrachiome		
1 1.2 2-Tetrachione	ethane :	וו ע.
		טו ע.:
Chicanhanyana		יטי טייטי
		טו עו
Ciurana		.U 10
		. V U
	Methylene_ChlorideAcetoneCarbon Disulfide1,1-Dichloroethene1,2-Dichloroethene1,2-Dichloroethene1,2-Dichloroethene2-Butanone1,1,1-Trichloroethene2-Butanone1,1,1-TrichloroetheneCarbon TetrachlorideneCarbon TetrachlorideneCarbon TetrachlorideneCis-1,3-DichloropropaneCis-1,3-DichloropropaneCis-1,3-DichloropropaneCis-1,3-DichloropropaneChloroetheneTrichloroetheneTrichloroetheneTrichloroetheneTrichloroetheneTrichloroetheneTrichloroetheneChlorobenzene_	Methylene_Chloride

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
		BU.

th Code:	_ Case No.:	SAS No.:	SDG No.:
atrix: (soil/wat	er) WATEL	Lah Sam	In In: 19188
mple wt/vol:	5.0 (g/mL)	Tab File	D: >V30/4
vel: (low/med	1 Low	Date Rec	==ived: 08/10/89
Moisture: not d	ec. <u>190</u>	Cate An	175eq: 08/21/89
Lumn: (pack/ca	p) Pack	Dilution	a Factor: 10

1 - z - z - z - z - z - z - z - z - z -			
7			
5			
6			
7			
8	. .		
	- -		
1.	-		
2			
3			
5.			
.6 .	·	<u> </u>	
7 - i			
8	.		
g		<u>• • • • • • • • • • • • • • • • • • • </u>	
1.	¦		
2			
3			
4			
5.			
7.			
8		!	
9			ب

UDLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE 40.

1 Secondary B 1 191776L

- Name: OBG Laboratories, Inc.

Contract: 2844.014.517

Do Code: - Case No.: -

SAS No.: -

SDG No .: -

rix: (soil/water) WATER

Lab Sample ID: 1917701

ample wt/vol: 5

(q/mL) mL

Lab File ID: 003012

Clow/med LOW

Date Received: 08/16/39

Moisture: not dec. 180

Date Analyzed: 08/24/39

Jumn: (packreap) PACK

Dilution Factor: 2

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

	1		i	i
74-87-3	Chloromethane	٧. و2	100	1
74-83-9	BromomethaneI	20.U	IU D	!
75-01-4	Vinyl Chloride!	20.0	:00	1
75-00-3	ChloroethaneI	20.V	100	1 .
75-09-2	Methylene_Chloride!	10 2.0	:380	1
7-64-1	AcetoneI	20. U	14 0	IAn
75-15-0	Carbon Disulfide	10.V	100	i
75-35-4	1,1-DichloroetheneI	10.0	ט עוו	i
75-34-3	1,1-Dichloroethane	10.V	ال با	i
40-59-0	1.2-Dichloroethene_(total)	10.0	10.0	1
7-66-3	Chloroform	10.Ŭ	10 0	ı
107-02-2	1.2-Dichloroethane	10.0	tu D	i
78-93-3	2-Butanone	20.V	10.0	í
1-55-6	2-Butanonei 1,1,1-Trichloroethanei	10.U	TÜ Ö	i
6-23-5	Carbon Tetrachloride	10.V	ם עו	1
08-05-4	Vinul Acetate	20.0	ם טו	1
75-27-4	Vinyl Acetatel	10.0	iu D	1
8-87-5	1,2-Dichloropropane		ם עו	1
00-1-01-5	cis-1,3-Dichloropropene	10.0	10.5	1
9-01-0	Trichloroethenei	10.0	10.5	i
24-48-1	Dibromochloromethane	10.0	10 0	. 1
9-00-5	1,1,2-Trichloroethane	10.0	10.5	1
			10.5	i
0061-02-6	Benzenei trans-1,3-Dichloropropenei	10.0	10 0	i
5-25-2	Bromoform	10.U	10.5	
08-10-1	4-Methyl-2-pentanone	20.0	iu D	i
	2-Hexanone		10.0	i
27-18-4	Tetrachioroethene	10.0	10.5	1
9-34-5	1,1,2,2-Tetrachioroethanei	10.0	16 5	1
08-39-3	Toluene	10.0		i
08-30-7	Chlorobenzenei	10.0		•
00-70-,	Ethylbenzene	10. <i>U</i>	יט טיטו	1
00-41-5	Styrene	10.0	נטי	
	Xylene (total)	16.0	:J 5	1

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

_		 	
•			
•	-	3 ~	

EPA SAMPLE NO.

Lab Name: OBG LABOR	ATORIES, INC.	Contract: 2844.04.57	191710
Lab Code:	Case No.:	SAS No.: SDG	
Matrix: (soil/water	WATEL	Lah Sample ID	: <u>19177</u>
Sample wt/vol:	5,0 (g/ml) mc	Lab File ID:	>1/30/2
Level: (low/med)	400	Date Received	= 08/16/89
t Moisture: not dec	100	Date Analyzed	= <u>08/24/89</u>
Column: (pack/cap)	PACK	Dilution Fact	or: <u>2</u>
Vieninam MTCa davada	· · ·	CONCENTRATION UNITS	'\$

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
2				
3				
—		-		
6		-		
→ '				
8				
9				
····		.] ————]		
2		.		
3		¦i		
.4		ii		
5				
9 -				
7-		·		
9.				
J.				
L		ii		
4.			·	
5				
7 -				
3				
<u>:</u>		! <u></u> .		
/ ·		ļ ———— ļ		

SEMINITATILE PROMNISS ANALYSIS CATA SHEET

CIMBRY B ab Name: CBG Laboratories Inc. Contract: 2884.014.517 Case No.: ----SAS, No.: ----Lab Code: ----3DG No.: ---atrix: (zoil, water) WATER Lab Sample ID: 19173RE - Sample Wt/vol: 540 (IT/ML) ML Lab File ID: : 31. fed Level: (low/med) LOW Date Received: 13/15/89 Moisture: not dec.____ dec. Date Extracted: US. 21/89 Extraction: Sepf/Cont/Sonc) SEPF Date Analyzed: 9/02/39 PC Cleanup: (Y/N) N pH:--.-Dilution Factor: 1.00000

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L O 75. R | 108-95-2----Phenol ij 19.0 | 111-44-4------bis(2-Chloroethyl)Ether_ | 95-57-3-----2-Chlorophenol_ JY.R :] ! 541-73-1-----1,3-Dichlorobenzene_ 19.0 : 13 13.U ij | 100-51-5----Benzyl alcohol_ 19.U : "..." | 95-50-1-----1,2-Dichlorobenzene_ 19.0 : U → 35-48-7----2-Methylphenol_ | 39638-32-9----bis(2-chloroisopropyl)ether_; 19.U 1.5 106-44-5----4-Methylphenol_ : U ۲۶.۲ 621-64-7----N-Nitroso-Di-n-propylamine_ 13.U ن . | 67-72-1----Hexachloroethane____ 19.V • ::: | 98-95-3-----Nitrobenzene___ 19.0 : ป 78-59-1------Isophorone_ 19.V 86-75-5-----2-Nitrophenol_ ج میسند 105-67-3-----2,4-Dimethylphenol_ ج .سند 95.U 1 65-65-0-----Benzoic acid_ 111-31-1----bis(2-Chloroethoxy)methane_ :: 19.U ز: 120-53-2-----2,4-Dichlorophenol_ 18.R 19.V : U | 120-82-1-----1,2,4-Trichlorobenzene_ | 91-20-3-----Naphthalene_ 19.U IJ | 106-47-8-----4-Chloroaniline_ 19.V : U 19.0 87-08-3-----Hexachlorobutadiene_ ij 25.R 59-50-7----4-Chioro-3-methylphenol_ | 91-57-6----2-Methylnaphthalene_ 19.V 15.V | 77-47-4----Hexachlorocyclopentadiene_ : 0 R . بيرند • 7 | 88-06-2----2,4,6-Trichlorophenol_ i 95-35-4-----2,4,5-Trichlorophenol_ ۾ بيو . U 91-58-7----2-Chloronaphthalene_ 19.U 317 88-74-4-----2-Nitroaniline_ 93.U | 131-11-3-----Dimethylphthalate_ 19.U 1 208-36-5-----Acenaphthylene_ :9.U | 606-20-2-----2.6-Dinitrotoluene_ 19.U

FORM I SV-1

1/87 Rev.

erit salatee ..

SEMIVOLATILE ORGANICS AMALYSIS DATA SHEET

Primary B 19175

Sab Name: CEG Laboratories Inc. Contract: 2884.014.517 |

Lan Code: ---- Case No.: ---- SAS No.: ---- SDG No.: ----

atri : (soil/water) WATER Lab Sample II: I9175RE

Sample wt/vol: 540 (g/mL) mL Lab File ID: >80988

evel: (low/med; LOW Date Received: 08/16/89

* Moisture: not dec. ____ dec. ___ Date Extracted:08/21/89

Extraction: (Sepf/Cont/Sonc) SEPF Date Analyzed: 9/02/89

PC Cleanup: (Y/N) N pH:--.- Dilution Factor: 1.00000

	CONCENTRATION UNITS:					
CAS NO.	COMPOUND	(ug/L or	ug/Kg)	ug/L	ű	
99-09-2	3-Nitroanilin		1	93.0	((U	
	Acenaphthene_			19.U	ΙŪ	
	2,4-Dinitrophe			25.R	ίŬ	
100-02-7	4-Nitrophenol		· ·	۾ جو	ប	
132-64-9	Dibenzofuran_		i	19.0	į U	
121-14-2	2,4-Dinitroto	luene	·	19.Ŭ	U	
84-66-2	Diethylphthala	ate		19.0	iŪ	
7005-72-3	Diethylphthala	-phenylethe	<u>r_</u>	19.0	iŪ	
36-73-7	Fluorene			19.U	ίŪ	
100-01-5	4-Nitroaniline	.		93.0	Ü	
534-52-1	4,6-Dinitro-2	-methylpheno	1	23. R	ίÜ	
36-30-6	N-Nitrosodiphe	envlamine (1	<u> </u>	19.U	Ü	
Lu1-55-3	4-Bromophenyl-	-phenylether		19.U	ίŪ	
118-74-1	Hexachloroben:	ene		19.V	1.1	
37-00-5	Pentachlorophe	nol		R. Eg	ີ່ປ	
35-01-8	?henanthrene_			19.V	ΕÜ	
120-12-7	Anthracene			19.V	្រែ	
84-74-2	Di-n-butylphth	nalate		19.Ŭ	נון	
206-44-0	Fluoranthene_			19. <i>U</i>	! U	
129-00-0				19. Ú	: U	
35-68-7	Butylbenzylph	:halate	i	19. V	IU	
91-94-1	3,3'-Dichlorob	enzidine	1	37. U	l U	
56-55-3	Benzo(a)anthra	cene		19.U	U	
218-01-3	Chrysene		<u> </u>	19. Ü	U	
117-81-7	bis(2-Ethylhe)	(yl)phthalat	e;	19 JU.U	JE	
117-84-0	Di-n-octylphti	alate	[19.V	(U	
205-99-2	Benzo(b)fluora	inthene	!	19.U	U	
207-08-9	Benzo(k)fluora	nthene	1	19.V	ľ	
50-32-3	Benzo(a)pyrene	<u> </u>		19.U	ΙÜ	
193-39-5	Indeno(1,2,3-c	d)pyrene		19.V	ָּט ;	
53-70-3	Dibenzo(a,h)an	thracene	!	19.Ů	IU	
191-24-2	Benzo(g,h,i)pe	rylene	1	19.0	U	

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

number TICs found: 14

EPA	SAMFLE	::=

TEN Tab Name: OBG LABORA	T -	9175 B		
ab Code:	Case No.:	SAS No.:	SDG No.	:
"atrix: (soil/water	WATER	-Lab S	ample ID:	I9175
Sample wt/Vol:	540 (g/mE) NL	Lab: F	ue m: 🔼	B0971
avel: (low/med)	Low	Date :	Received: 01	3/16/89
& Moisture: not dec.	dec	Date	Detracted: 01	5/21/89
ctraction: (SepF/C	cont/Sone) See	E Date	Inalyzed: 0	1/01/19
CTC Cleanup: (Y/N)	N PE: -	Diluti	on Pactor:	

CONCENTRATION UNITS:

AS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOWN	3.70	10]	4
•	41	4.91	120 J	\mathbf{I}
•		6.74		I
·	1	9.40	10 1	I
	1	10.77	/6 T	
- 19222	12.5 - CYCLOHEXADIENE -1.4-010	16.14	10	工
·	<u>un knamn</u>	16.51	12 1	\perp
•		17.35	95	\perp
•	4	19.67	95	工
•		21.05	9.5	工
•	11	22.35	85	上
•		23.53	12.7	工
•	UNKNOWN HYDROCARBON	23.61	22.5	\perp
•	してなること	24.36	60 I	V
•				
•				
•				
•				
•				
•i				
+				
•				
	· · · · · · · · · · · · · · · · · · ·	,		

FORM I SV-TIC

SEMITUOLA JILE DEGANICE ANALYSIS DATA SHEET Steomery D .ab Name: OBG Laboratories Inc. Contract: 2684.014.517 Lab Code: ----Case No.: ---- SAS No.: ----SDG No.: ----Matrix: (soil/water) WATER Lab Sample ID: 19177RE Lab File ID: Fample wt/vol: 810 (d/ml) ml Date Received: 08/15/89 Level: (low/med) LOW Moisture: nct dec.____ dec. Date Extracted: 08/21/89 Extraction: 'Sepf/Cont/Sonc) SEPF Date Analyzed: 9/12/89 PC Cleanup: (Y/N) N Dilution Factor: 1,00000 pH:--.-CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) ug/L CAS NO. ii. R :13 108-95-2----Phenol | 111-44-4----bis(2-Chloroethyl)Ether_ 12.U IJ 12. R | 95-57-c----2-Chlorophenol___ ៈប 541-73-1----1,3-Dichlorobenzene_ 12.0 1 106-46-7-----1,4-Dichlorobenzene___ 12.U i 100-51-d-----Benzyl alcohol____ 12. U : 'U | 95-50-1----1,2-Dichlorobenzene____ 12. U U | 95-48-7----2-Methylphenol____ 22. R : :J 1 39638-32-9----bis(2-chloroisopropyl)ether_/ 12. U . 13

FORM I SV-1

106-44-5----4-Methylphenol____

1 105-67-3----2,4-Dimethylphenol____

120-82-1----1,2,4-Trichlorobenzene_

| 120-83-2----2,4-Dichlorophenol___

| 87-68-3-----Hexachlorobutadiene___

i 91-58-7----2-Chloronaphthalene_

| 131-11-3----Dimethylphthalate___

: 208-96-3-----Acenaphthylene____ 606-20-2----2.5-Dinitrotoluene_

i 85-74-4----2-Nitroaniline___

1 59-50-7----4-Chloro-3-methylphenol_ 1 91-57-6----2-Methylmaphthalene____

1 77-47-4-----Hexachlorocyclopentadiene_

| 88-06-2----2.4.6-Trichlorophenol____

95-95-4----2,4,5-Trichlorophenol____

67-72-1-----Hexachloroethane____

| 98-95-3----Nitrobenzene____

| 88-75-5----2-Nitrophenol____

79-59-1-----Isophorone__

| 65-d5-d-----Benzoic acid_

i 91-20-3-----Naphthalene_

| 106-47-3----4-Chloroaniline_

621-64-7----N-Nitroso-Di-n-propylamine_

! 111-31-1----bis(2-Chloroethoxy)methane__!

1787 Rev.

2. R

12.U

12. U

12. V

12. U

22. R

12. P

62. V

12. V

22. R

12.V

12.V

12. V

12. V

;z. Ř

12. U 12.V

22.R

sign. R

12. U

62.V

12.V

12.V

12.V

ΗU

111

: U

iU

IJ

; IJ

U

ı U

· []

U

! U

! ']

:IJ

IJ

·j

17

J.

SEMIVULATILE ORGANICS ANALYSIS DATA SHEET

Secondury 19177	

ab Name: OBG Laboratories Inc. Contract: 2884.014.517

atri : (soil/water) WATER Lab Sample ID: I9177RE

Sample wt/vol: 810 (g/mL) mL Lab File ID: >80991

Level: (low/med) LOW Date Received: 08/16/89

Moisture: not dec. ____ dec. ___ Date Extracted:08/21/89

Extraction: (Sepf/Cont/Sonc) SEPF Date Analyzed: 9/02/89

PC Cleanup: (Y/N) N pH:--.- Dilution Factor: 1.00000

	c	ONCENTP.	CONCENTRATION UNITS:		
CAS NO.	COMPOUND (ug/L or	ug/Kg)	ug/L	Q
99-09-2	3-Nitroaniline		1	62.U	i u
83-32-9	Acenaphthene		<u> </u>	12.0	ίŬ
51-28-5	2,4-Dinitrophenol_		i	ie. R	Ü
100-02-7	4-Nitrophenol			#2. R	U
1354-9	Dibencofuran	·	<u> </u>	12.0	าย
	2.4-Dinitrotoluene			1U	ΙŪ
84-66-4	Diethylphthalate		°	12.0	Ü
7005-72-3	4-Chlorophenyl-phe	nylethe	<u> </u>	12.U	10
				12.0	U
100-01-6	Fluorene			62. Ŭ	U
534-52-1	4,6-Dinitro-2-meth	ylpheno	1	se. R	เซ
86-30-6	N-Nitrosodiphenyla	mine (1	<u> </u>	12.V	U
101-55-3	4-3romophenyl-phen	ylether.		12.0	lu -
	Hexachlorobenzene_			12.0	្រែ
87-86-5	Pentachlorophenol_	•	i	ج بيخو	IU
	Phenanthrene			12.V	U
120-12-7	Anthracene	•	1	12.Ŭ	:ប
84-74-2	Di-n-butylphthalat	e	i	12.V	: U
205-44-0	Fluoranthene		1	12.V	ΙÜ
129-00-0	Pyrene		1	12.U	ľŬ
	Butylbenzylphthala	te	1	12.0	IU
	3,3'-Dichlorobenzi			25.U	IU ·
	Benzo(a)anthracene			12.0	U
218-01-9	Chrysene		1	الر12	10
117-81-7	bis(2-Ethylhexyl)p	hthalat	e!	12.8. U	IJB
117-84-0	Di-n-octylphthalat	e		12.0	Į U
	Benzo(b)fluoranthe			12.0	IU
	Benzo(k)fluoranthe			12.0	ប
50-32-8	Benzo(a)pyrene			12.Ŭ.	1U -
193-39-5	Indeno(1,2,3-cd)py	rene	l	12.V	IU .
53-70-3	Dibenzo(a,h)anthra	cene		12.Ů	1 U
191-24-2	Benzo(g,h,i)peryle	ne	!	12. <i>U</i>	U
·					_!

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

eta	SAMFLE	XC.
-----	--------	-----

Secondary B

Date Extracted: 08/21/79

Tab Name: 0	BG LABORATORIES, INC.	Contract: 2884.014.511	19177
ے Code:	Case No.:	SAS No.: SDG	No.:
trix: (soi	L/water) WATER	Lab Sample ID:	I9177
Sample wt/Vol	1: \$10 (9/2L) NL	Lab File ID:	>80974
vel: (low	s/med) Low	Date Received:	08/16/89

: Cleanup: (Y/N) N pH: _ Bilution Factor: ______

mber TICs found: /3 . (ug/L or ug/Kg)

a Maisture: not dec._

as number	COMPOUND NAME	RT	EST. CONC.	Q
÷	UNKDOWN	3.71	6 J	3 (
-		4.90	34 1	
•		6.75	22 5	
٠ <u>ــــــــــــــــــــــــــــــــــــ</u>		7.06	32 [
•	11	8.63	6 J	-
- 104767	I-HEXANOL 2-ETHYL-	9.23		
•	INKNOWN'	9,42	_6J	
•		9.86	75	ݐٳ
•	<u> </u>	10.79	11 5	
78332	12,5-CYCLOHEYADIENE -1.4-DO	16.14		
-	I UNKNOWN !	17.69	7]	
•		23.52	1丁	سلاا
<u> </u>	LUNKHOWN HYDROCARBON	23.61	/ \$J	IV
				1
				i
`				I
			·	
				J
		ĺ		

FORM I SV-TIC

PESTICIDE ORGANICS ANALYSIS DATA SHEET

SITE	
	•

Lab Name: OBG Labor	atories, Inc.	c	ontract: <u>2844.014.517</u>	-	Primar	y B
Lab Code:	_ Case No.:	·	SAS No.:	SDG	No.:	
Matrix: (soil/water)	Water		Lab Sample ID:	19175		
Sample wt/vol:	800 (g/mL)	mL	Lab File ID:			
Level: (low/med)	Low		Date Received:	8-16-	89	
% Moisture: not dec.	dec		Date Extracted: _	8-21-	89	
Extraction: (Sep F/C	ont/Sonc)	SepF	Date Analyzed:	8-25-	89	
GPC Cleanup: (Y/N)	N pH:	7.0	Dilution Factor:	_1_0_		
CAS NO.	COMPOUND		CONCENTRATION UNITS: (µg/L or µg/Kg)µg/L	· ·	Q	
319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 53494-70-5 5103-71-9 5103-74-2 8001-35-2 1104-28-2 11141-16-5 53469-21-9	beta-BHCdelta-BHCgamma-BHC (LinHeptachlorAldrinHeptachlor epoEndosulfan IDieldrin4,4'-DDEEndrinEndosulfan II4,4'-DDDEndosulfan sul4,4'-DDTMethoxychlorEndrin ketonealpha-Chlordangamma-Chlordangamma-ChlordanToxapheneAroclor-1212Aroclor-1232Aroclor-1242	dane)_				

FORM I PEST

APPENDIX B

SITE WS-9

Lab Name: OBG Labor	ratories, Inc.	Contract:	2844.014.517	WS-9
Lab Code:	Case No.	SAS	No.:	SDG No.
Matrix (soil/water):	Water		Lab Sample ID:	J2597
Level (low/med):	Low		Date Received:	10-19-89
\$ Solids:	0.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				1
7440-36-0	Antimony	79.5丁			F
7440-38-2	Arsenic	60.7			F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	14.00			P
7440-70-2	Calcium				
7440-47-3	Chromium	16.0丁			P
7440-48-4	Cobalt				
7440-50-8	Copper	39.0			P
7439-89-6	Iron				\top
7439-92-1	Lead	1270.0			P
7439-95-4	Magnesium				1.
7439-96-5	Manganese			·	
7439-97-6	Mercury				T
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	20.010-005	u	N	F
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				1
7440-62-2	Vanadium				
7440-66-6	Zinc	162.2			P
	Cyanide				
	Tin	800.00	u		P

Color Before:	Brown	Clarity Before:	Cloudy	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:	SE was analyze	ed at a 1:10 diluti	on.		

Form I - IN

7/87

SITE

ab Code:	·	Case No.	SAS N	io.:	<u></u>	s	DG No.
fatrix (soil/wate	r): Wate	r		Lab	Sample	• ID:	J2600
Level (low/med):	Low	•		Dat	e Rece	ived:	10-19-89
Solids:	0.0	.					
	Concent	ration Unit	s (µg/L or mg/kį	g dry	weigh	t): <u>ne</u>	<u>/1_</u>
. * ·	CAS No.	Analyte	Concentration	С	Q	M	
							•
	7429-90-5	Aluminum		 			
	7440-36-0	Antimony					
	7440-38-2	Arsenic					
	7440-39-3 7440-41-7	Barium					
	7440-43-9	Beryllium Cadmium		-			
	7440-70-2	Calcium		-			
	7440-47-3					 	
•		Cobalt					
	7440-50-8	Copper	· · · · · · · · · · · · · · · · · · ·			 	
	7439-89-6	Iron					
,	7439-92-1	Lead	414.0			P	
•	7439-95-4	Magnesium					
,	7439-96-5	Manganese					
,	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7	· Potassium					
	7782-49-2						
	7440-22-4	Silver					
	7440-23-5	Sodium					
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
		Cyanide					
, ,		Tin					
7							
olor Before:	olorless	Clarity	Before: Clear		-	Textur	e: <u>-</u>

Form I - IN

7/87

Lab Name: OBG Labor	catories, Inc.	Contract:2844.014.517	WS-5
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	J2601
Level (low/med):	Low	Date Received:	10-19-89
Solids:	0.0		•

Concentration Units (µg/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				_
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium			,	
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				T
7439-92-1	Lead	313.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				
7440-62-2	Vanadium				T
7440-66-6	Zinc				T
:	Cyanide			· · · · · · · · · · · · · · · · · · ·	T-
	Tin				T

Color B	efore: _	Lt. Brown	Clarity	Before:	Cloudy	Texture:	-	
Color A	fter: _	Pale Yellow	Clarity	After:	Clear	Artifacts:		
Comment	s:						•.	

Form I - IN

7/87

SITE

 Lab Name: OBG Laboratories, Inc.
 Contract: 2844.014.517
 WS-4

 Lab Code: Case No.
 SAS No.: SDG No.

 Matrix (soil/water): Water
 Lab Sample ID: J2602

 Level (low/med): Low
 Date Received: 10-19-89

0.0

\$ Solids:

Concentration Units (µg/L or mg/kg dry weight): µg/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				T
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	63.75			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
•	Ťin			•	

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:					
					

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	WS-7
ab Code:	Case No.	SAS .No.:	SDG No.
<pre>fatrix (soil/water): _</pre>	Water	Lab Sample ID:	J2603
evel (low/med):	Low	Date Received:	10-19-89
Solids:	0.0	•	

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	408.0			P
7439-95-4	Magnesium	•			
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ť				

Color Before: _	Lt. Brown	Clarity Before:	_Cloudy	Texture:
Color After: _	Pale Yellow	Clarity After:	Clear	Artifacts: _
Comments:				

Form I - IN

7/87

SITE

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-6
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	J2604
Level (low/med):	Low	Date Received:	10-19-89
Solids:	0.0		

Concentration Units (µg/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				Г
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	78.0 J			F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Tin				

Color	Before: _	Colorless	Clarity Before:	Clear	Texture:	-
Color	After: _	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comme	nts:			•		
				,		

Form I - IN

7/87

Lab Name: OBG Labor	atories, Inc.	Contract:2844.014.517	WS-11
Lab Code:	Case No	SAS No.:	SDG No
Matrix (soil/water):	Water	Lab Sample	ID: <u>J2605</u>
Inval (low/mad):	• 232	Data Bassin	

0.0

* Solids:

Concentration Units (µg/L or mg/kg dry weight): __ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	190.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
					T

Color	Before:	Colorless	Clarity Before:	Clear	Texture:	-
Color	After:	Pale Yellow	Clarity After:	Clear	Artifacts: _	•
Commen	its:					

Form I - IN

7/87

SITE

1 Inorganic Analysis Data Sheet

SITE

		•						we 1
Lab Name: OBG I	aboratories	, Inc.	Contract:	284	4.014.5	17		NS-1
Lab Code:		Case No	SAS N	io . :			SDG N	0
datrix (soil/wate	er): Wate	<u>er</u>		La	b Sample	ID:	J26	06
evel (low/med):	Low	·		Da	te Recei	ved:	10-	19-89
Solids:	0.0	<u>-</u>						
	0		- 619					
	Concent	ration Unit	s (µg/L or mg/k	g as	y weigh	E): _	ug/L	
	CAS No.	Analyte	Concentration	С	Q	М		•
	7429-90-5	Aluminum				 	•	
	7440-36-0						·	
	7440-38-2	Arsenic					` <u>}</u>	
	7440-39-3						1	
	7440-41-7	Beryllium					` 	
	7440-43-9	Cadmium					j	
	7440-70-2	Calcium					1	
	7440-47-3	Chromium					1	
	7440-48-4						' [
	7440-50-8	Copper					1	
	7439-89-6	Iron						
•	7439-92-1	Lead	48.8J			F		
<i>'</i>	7439-95-4	Magnesium				 	1	
. *	7439-96-5	Manganese				+	1	
	7439-97-6						ł	
	7440-02-0						1	
	7440-09-7							
•	7782-49-2							
	7440-22-4					+		
	7440-23-5					+		
*							j	
	7440-28-0 7440-62-2	Thallium			·			
		Vanadium		\vdash				
	7440-66-6	Zinc		\vdash		+-	1	
		Cyanide		\vdash			,	
		Tin		Ш				
						_		_
color Before:	C-11	Clarity	Before: Clea			Text	170	_

Color Before:	Colorless	Clarity Before:	Clear	Texture:		
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	•	
Comments:	• • • • • • • • • • • • • • • • • • •					
	*					

Form I - IN

7/87

Lab Name: OBG Labora	tories, Inc.	Contract:	2844.014.517	WS-2
Lab Code:	Case No	SAS	No.:	SDG No.
Matrix (soil/water): _	Water		Lab Sample ID:	J2607
Level (low/med):	Low		Date Received:	10-19-89
Solids:	0.0			

Concentration Units (μ g/L or mg/kg dry weight): $\underline{\mu}$ g/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				T
7440-39-3	Barium				
7440-41-7	Beryllium				T
7440-43-9	Cadmium			is	
7440-70-2	Calcium	•			T
7440-47-3	Chromium				
7440-48-4	Cobalt				T
7440-50-8	Copper				T
7439-89-6	Iron				1
7439-92-1	Lead	69.4 J			F
7439-95-4	Magnesium	•			T
7439-96-5	Manganese				1
7439-97-6	Mercury				T -
7440-02-0	Nickel				1
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				1
7440-23-5	Sodium				1
7440-28-0	Thallium				
7440-62-2	Vanadium				1
7440-66-6	Zinc				
	Cyanide				1
	Tin				

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	-
Comments:					
		· · · · · · · · · · · · · · · · · · ·			

Form I - IN

7/87

	٦
WS-3	

		INORG	ANIC ANALYSIS DA	ATA	SHEET		
Lab Name: OBG I	Laboratories	, Inc.	Contract:	284	4.014.5	17	WS-3
Lab Code:	· · · · · · · · · · · · · · · · · · ·	Case No.	SAS N	io.:			SDG No.
Matrix (soil/wate	er): Wat	er_		La	b Sample	ID:	J2608
Level (low/med):	Low	<u>. </u>		Da	te Recei	ved:	10-19-89
\$ Solids:	0.0	<u></u>			•		
	Concent	tration Unit	s (µg/l or mg/k	g dr	y weight	:): _	μg/L
	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5	Aluminum				1	,
	7440-36-0	Antimony					•
	7440-38-2	Arsenic					
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9	1					
•	7440-70-2	Calcium					
,	7440-47-3	Chromium					
	7440-48-4		-				
	7440-50-8						
'	7439-89-6	Iron					
	7439-92-1	Lead	85.3]			F	
	7439-95-4	Magnesium		·			
•	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel					
•		Potassium					
	7782-49-2	Selenium		j			
	7440-22-4	Silver					
	7440-23-5	Sodium					
	7440-28-0	Thallium					
	7440-62-2	Vanadium				T	
	7440-66-6	Zinc					
		Cyanide					
		1					' <u> </u>

Color Before:	Colorless	Clarity Before:	Clear	Texture:	-
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	-
Comments:					

Form I - IN

7/87

SITE

			•				1	
Lab Name: OBG	Laboratories	Inc.	Contract:	2844.	014.51	7	ES-6	
Lab Code:	· · · · · · · · · · · · · · · · · · ·	Case No.	SAS N	io.:		s	DG No.	
Matrix (soil/wat	er): <u>Wate</u>	<u>r</u>		Lab	Sample	ID:	J2609	
Level (low/med):	Low	-		Dat	e Rece	ived: _	10-19-89	
\$ Solids:	0.0	-						
	Concent	ration Unit	s (μg/L or mg/kj	dry	weigh	t): <u>ue</u>	/ <u>L</u>	
	CAS No.	Analyte	Concentration	С	Q	м		
	7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium	101.0 J			P		
Color Before:	7440-28-0 7440-62-2 7440-66-6	Thallium Vanadium Zinc Cyanide Tin	Before: Clear			Textur	•:	-
	Pale Yellow		After: Clear		-	Artifa		
Comments:					- 			

Form I - IN

7/87

			211	. 6	
l i	I .	ı			
		ł			

b Code:		Case No					DG No.
trix (soil/wate	r): Wate	Ī		Lab	Sample	e ID:	J2610
vel (low/med):	Low	- '		Date	Rece	ived: _	10-19-89
Solids:	0.0	-					
	Concent	ration Unit	s (µg/L or mg/k	dry	weigh	ւt): <u>րջ</u>	<u>/L</u>
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum					
	7440-36-0	Antimony					
·	7440-38-2	Arsenic		$\vdash \vdash$			
	7440-39-3			\vdash		1	
N.	7440-41-7			 	 		
	7440-43-9	Cadmium		\vdash	·		
	7440-70-2	Calcium		 			
	7440-47-3	Chronium				 	
·	7440-48-4	Cobalt		 			
	7440-50-8	Copper		\vdash	·	- 	
	7439-89-6	Iron					
	7439-92-1	Lead	244.0			<u> P</u>	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7	Potassium					
	7782-49-2						
	7440-22-4						
	7440-23-5	Sodium				 	
	7440-28-0	Thallium					
	7440-62-2	Vanadium		$\vdash +$			
	7440-66-6	Zinc		-			
		Cyanide Tin		-			
		Tin					
or Before:	Colorless	Clarity	Before: Clea	r	-	Textur	e:
			After: Cle			4	cts:

Form I - IN

7/87

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	ES-1
ab Code:	Case No	SAS No.:	SDG No.
fatrix (soil/water): _	Water	Lab Sample ID:	J2611
evel (low/med):	Low	Date Received:	10-19-89
: Salide:	0 0		

Concentration Units (µg/L or mg/kg dry weight): __ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic			1	
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium	-			
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	20.0 70.003	u		F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				,
7440-66-6	Zinc				
	Cyanide				
	Tin				

Color Before: _	Colorless	Clarity Before: _	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts: _	
Comments:	PB was analyz	ed at a 1:10 diluti	on.		
					
		· · ·			

Form I - IN

7/87

SITE

	SITE
17	ES-2
	SDG No.

 Lab Name: OBG Laboratories, Inc.
 Contract: 2844.014.517
 ES-2

 Lab Code: Case No.
 SAS No.: SDG No.

 Matrix (soil/water): Water
 Lab Sample ID: J2612

 Level (low/med): Low
 Date Received: 10-19-89

 * Solids: 0.0

Concentration Units (µg/L or mg/kg dry weight): __ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt	·			T
7440-50-8	Copper				
7439-89-6	Iron				T
7439-92-1	Lead	16.4 R		SN*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel		· ·		
7440-09-7	Potassium	,			
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Tin				

Color Before:	Colorless	Clarity Before:	Clear	Texture:	-
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts: _	
Comments:					

Form I - IN

7/87

.ab Name: OBG Labora	tories, Inc.	Contract: _	2844.014.517	ES-5
ab Code:	Case No	· SAS	No.:	SDG No.
atrix (soil/water): _	Water		Lab Sample ID:	J2615
evel (low/med):	Low		Date Received:	10-19-89
Salider	0.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium			!	I
7440-47-3	Chromium				
7440-48-4	Cobalt				I
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	100.0 K		N*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				\mathbf{I}
7440-02-0	Nickel				
7440-09-7	Potassium				Ī
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Tin				

Color Before: Lt. Brown	Clarity Before:Cloud	ly Texture:
Color After: Pale Yellow	Clarity After:Cles	Artifacts:
Comments: PB was analyzed a	at a 1:5 dilution.	

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-17	
ab Code:	Case No.	SAS No.:	SDG No.	_
(atrix (soil/water): _	Water	Lab Sample ID:	J2616	
Level (low/med):	Low	Date Received:	10-19-89	_
Solids:	0.0			

Concentration Units (µg/L or mg/kg dry weight): __ug/L

	7				
CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				†
7440-36-0	Antimony				
7440-38-2	Arsenic				T
7440-39-3	Barium				T
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				1
7440-47-3	Chromium				Ī
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				ī
7439-92-1	Lead	418.0J			P
7439-95-4	Magnesium				1
7439-96-5	Manganese				T
7439-97-6	Mercury				
7440-02-0	Nickel				T
7440-09-7	Potassium	 			1
7782-49-2	Selenium				•
7440-22-4	Silver				1
7440-23-5	Sodium				1
7440-28-0	Thallium				ī
7440-62-2	Vanadium				
7440-66-6	Zinc				T
	Cyanide				
	Tin				

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:					

Form I - IN

7/87 000018

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:	2844.014.517	ES-7
Lab Code:	Case No.	SAS N	o.:	SDG No.
Matrix (soil/water): _	Water		Lab Sample ID:	J2617
Level (low/med):	Low		Date Received:	10-19-89
* Solids:	0.0		•	

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium			1	1
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron			1	1
7439-92-1	Lead	12:0 R		SN*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				T
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				\top
	Cyanide				
	: Glenree				

Color Before:	Colorless	Clarity	Before:	Clear		Texture:	
Color After: _	Pale Yellow	Clarity	After:	Clear	-	Artifacts:	-
Comments:							
			·.				

Form I - IN

7/87

SITE

S	I	T	Έ
_		-	-

Lab Sample ID: J2618 Lab Sample ID: J2618 Lab Sample ID: J2618 Lab Sample ID:	ab Code:		Case No	SAS N	io.:		SI	G No	
Concentration Units (µg/L or mg/kg dry weight):ug/L CAS No.	atrix (soil/wate	r): Wate	r		La	b Sample	e ID:	J2618	
CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-41-7 Beryllium 7440-47-3 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-99-1 Lead 7439-95-1 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7740-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7740-66-6 Zinc Cyanide Tin	evel (low/med):	Low	.		Da	te Rece	ived:	10-19-89	
CAS No. Analyte Concentration C Q M 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 8eryllium 7440-47-3 Cadmium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 7439-92-1 17439-95-4 Magnesium 7440-02-0 7440-09-7 7782-49-2 Selenium 7440-22-4 Silver 7440-22-5 Sodium 7440-22-7 7440-66-6 Zinc Cyanide Tin	Solids:	. 0.0	-						
7429-90-5 7440-36-0 7440-38-2 7440-38-2 7440-39-3 Rarium 7440-41-7 Reryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-92-1 Lead Ragnesium 7439-95-4 Magnesium 7439-95-6 Marganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-02-0 Nickel 7440-23-5 Sodium 7440-23-5 Sodium 7440-22-4 Silver 7440-23-5 Sodium 7440-66-6 Zinc Cyanide Tin		Concent	ration Unit:	s (µg/L or mg/k	g dr	y weigh	t): <u>ug</u> /	L	
7440-36-0 7440-38-2 7440-39-3 7440-41-7 8eryllium 7440-43-9 7440-47-3 Cadmium 7440-48-4 Cobalt 7440-50-8 7439-89-6 1ron 7439-92-1 7439-95-4 Magnesium 7440-02-0 7440-02-0 7440-09-7 7782-49-2 7440-28-0 7440-28-0 7440-66-6 Tin		CAS No.	Analyte	Concentration	С	Q	М		
7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-28-0 7440-28-0 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-28-0 7440-28-0 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-28-0 7440-28-0 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-66-6 7430-38-2 7440-68-8 7440-8-0 7440-8-0 7440-66-6									
7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-97-6 7440-02-0 7440-02-0 7440-02-2 7440-23-5 7440-28-0 7440-66-6									
7440-39-3 7440-41-7 Reryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-47-3 Chromium 7440-50-8 Copper 7439-89-6 Ton 7439-92-1 Read Rercury Manganese Manganese Mercury Nickel 7440-02-0 Nickel 7440-22-4 Silver 7440-23-5 Sodium 7440-66-6 Cyanide Tin							 		
7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7482-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Tin									
7440-43-9 7440-70-2 7440-47-3 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Tin									
7440-70-2									
7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 Manganese Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium 7440-66-6 Cyanide Tin					-		- .		
7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-02-0 Nickel 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Tin	j	The state of the s) '				- 		
7440-50-8 7439-89-6 1ron 1439-92-1 1439-95-4 1439-96-5 1439-97-6 1440-02-0 1440-09-7 1440-09-7 1440-22-4 1440-22-4 1440-23-5 1440-28-0 1440-66-6 1440-66-6 15									
7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Tin						•			
7439-92-1 7439-95-4 7439-96-5 7439-97-6 Magnese 7440-02-0 Nickel 7440-09-7 Potassium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium Cyanide Tin		*							
7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Mercury 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Tin		The state of the s		21-2	\vdash	CMA			
7439-96-5 7439-97-6 Mercury Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin			l "	37.3	\vdash	SN"	 		
7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin									
7440-02-0 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium 7440-66-6 Cyanide Tin									
7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin			_						
7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium Zinc Cyanide Tin									
7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 Cyanide Tin	, · · · · · · · · · · · · · · · · · · ·								
7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium Zinc Cyanide Tin					 				
7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin						····	 -		
7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin									
7440-66-6 Zinc Cyanide Tin	1				 				
Cyanide Tin	ĺ								
Tin		/440-00-0			\vdash				
	Ī		-		- 		 		
lor Before: Brown Clarity Before: Cloudy Texture:			III						
			Clasity	Refere: Class	3		Texture	•	

Form I - IN

7/87

\$ Solids:

0.0

Concentration Units (µg/L or mg/kg dry weight): __ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum		-		
7440-36-0	Antimony				
7440-38-2	Arsenic	3.0 T.QUJ	u	W	F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.0 U	u	W	F
7440-70-2	Calcium				
7440-47-3	Chromium	7.00	В		P
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	SOR		WN*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				T
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ťin				

rown	Clarity Before:	Cloudy	Texture:	-
ale Yellow	Clarity After:	Clear	Artifacts:	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		
	rown			

Form I - IN

7/87

SITE

SITE

		SAS N	io.:		;	SDG No
r): <u>Wat</u>	<u>e</u> r		Lab	Sample	ID: _	J2620
Low	<u>-</u>		Dat	e Recei	ved: _	10-19-89
0.0	-					•
Concent	ration Unit	s (µg/L or mg/kg	g dry	weight	t): _ <u>u</u>	g/L
CAS No.	Analyte	Concentration	С	Q	м	
7429-90-5	Aliminim		$\vdash \vdash$			
					 	
		5 611	R		+=	
	1	3.00			 	
7440-41-7			$\vdash \vdash$		 	
		1.00	1,1	¥	+=	
		1.00			 	
		46 07	\vdash		1	
		70.00		·	 	
			-		 	
			$\vdash \vdash$		 	
		2 12		N+	+ -	
			\vdash	14	 	
			-		 	

			$\vdash \vdash$		 	
				,	+	
			<u> </u>		+	
			1		+	
			 		 	
			-		 	
			 		 	
					+!	
- /					 	
	Tin				 	
	CAS No. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-96-5 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2	CAS No. Analyte 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-28-0 7440-28-0 7440-62-2 Vanadium	CAS No. Analyte Concentration 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Tron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Mercury 7440-02-0 Nickel 7440-02-0 Nickel 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc	CAS No. Analyte Concentration C 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-92-1 Lead 7439-95-4 Magnesium 7439-95-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7782-49-2 Selenium 7782-49-2 Sodium 7740-28-0 Thallium 7740-66-6 Tinc	Cas No. Analyte Concentration C Q 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-95-4 Magnesium 7439-96-5 Marcury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7740-28-0 Thallium 7740-66-6 Zinc	CAS No.

Form I - IN

7/87

	3115	
· 7	Well 13	

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	Well 13
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Water	Lab Sample ID:	J2621
Level (low/med):	Low	Date Received:	10-19-89
\$ Solids:	0.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	3.007	u		F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.00	u	W	F
7440-70-2	Calcium			_	
7440-47-3	Chromium	5.0 3.20	В		P
7440-48-4	Cobalt			·	
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	8.28		N*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				T
7439-97-6	Mercury				Τ
7440-02-0	Nickel				
7440-09-7	Potassium		!		1
7782-49-2	Selenium		:		
7440-22-4	Silver				
7440-23-5	Sodium				T
7440-28-0	Thallium			·	
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Tin				

Color Before:	Colorless	Clarity Before	: Clear	Texture:	•
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:					

Form I - IN

7/87

SITE

Well 14 Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517 Lab Code: Case No. _____ SAS No.: ____ SDG No. Matrix (soil/water): Water Lab Sample ID: J2622 Level (low/med): Low Date Received: 10-19-89 0.0 \$.Solids: Concentration Units (µg/L or mg/kg dry weight): µg/L CAS No. Analyte Concentration Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 3.001.0 F Arsenic 7440-39-3 Barium 7440-41-7 Beryllium F 7440-43-9 1.1V B Cadmium 7440-70-2 Calcium 7440-47-3 5.0V В Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 1.OR 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin

Color After: Pale Yellow Clarity After: Clear Artifacts: Comments:	-
Comments:	-
acuse 11 pg .	

Form I - IN

7/87 00002**4**

	\$	I	T	E
-	_	-	-	_

INORGANIC ANALYSIS DATA SHEET Well 15 Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517 Case No. Lab Code: ____ SAS No.: _____ SDG No. Matrix (soil/water): Water Date Received: 10-19-89 Level (low/med): Low 0.0 \$ Solids: Concentration Units (µg/L or mg/kg dry weight): _ug/L CAS No. Concentration Analyte Q M 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 3.00 To F_ 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 1.00 11 F 7440-70-2 Calcium 7440-47-3 Chromium . 5 D 3-0 U B P 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 20 R lu F N* 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc Cyanide Tin

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:					

Form I - IN

7/87

SITE

Lab Code:	· ************************************	Case No.	SAS N	lo.:		· ·	SDG No.
datrix (soil/wate	r):Wate	er Pr		Lab	Sample	ID: _	J2624
evel (low/med):	Low	_		Date	e Recei	ived:	10-19-89
Solids:	0.0			•			
	Concent	ration Unit:	s (µg/L or mg/k	g dry	weigh	t): <u> </u>	g/L
	CAS No.	Analyte	Concentration	С	Q	М	
,	7429-90-5	Aluminum					
	7440-36-0	Antimony					
	7440-38-2	Arsenic				+	
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9						
	7440-70-2	Calcium				•	
	7440-47-3	Chromium	•				
	7440-48-4	Cobalt					41
	7440-50-8	Copper					
	7439-89-6	Iron				i	t e
	7439-92-1	Lead	2200.07			P	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel			· · · · · · · · · · · · · · · · · · ·		
	7440-09-7	Potassium					
	7782-49-2						
	7440-22-4					<u> </u>	
	7440-23-5	Sodium					
1	7440-28-0	Thallium				 	•
	7440-62-2	Vanadium		-		 	
	7440-66-6	Zinc					
		Cyanide					
l l		Tin		. !			

Color After: Pale Yellow Clarity After: Clear · Artifacts: ______

Comments:

Form I - IN

7/87

SITE

Lab Name: OBG Laboratories, Inc.		Contract: 2844.014.517		Blk Water	
Lab Code:	Case No	SAS	No.:	SDG No.	
Matrix (soil/water): _	Water		Lab Sample ID:	J2625	
Level (low/med):	Low		Date Received:	10-19-89	
\$ Solids:	0.0				

Concentration Units (μ g/L or mg/kg dry weight): μ g/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum		-		+
7440-36-0	Antimony		1		
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium		Г		
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				—
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				\top
7439-92-1	Lead	: R 7.6	В	N*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium			\	
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	1				
	Cyanide Tin				L

Color Before:	Colorless	Clarity Before:	Clear	Texture:	
Color After:	Pale Yellow	Clarity After:	Clear	Artifacts:	
Comments:					
					_

Form I - IN

7/87 000027

l Inorganic Analysis data sheft

SITE

			Contract: 2844.014.517			B1k. SEI		
ab Code:	•	Case No	SAS N	io.:			SDG No.	
atrix (soil/wate	er): Wate	r	Lab Sample ID:			ID: _	J2626	
evel (low/med):	Low	_		Dat	e Recei	ived: _	10-19-89	
Solids:	0.0	-						
	Concent	ration Unit:	s (µg/L or mg/ks	g dry	weigh	t): μ	g/L	
		-		П				
	CAS No.	Analyte	Concentration	C	Q	M	·	
	7429-90-5	Aluminum		1		 		
•	7440-36-0	Antimony				 	·	
	7440-38-2	Arsenic						
,	7440-39-3	Barium						
	7440-41-7	Beryllium						
	7440-43-9							
	7440-70-2						r e	
	7440-47-3	Chromium						
	7440-48-4	Cobalt						
	7440-50-8	Copper						
	7439-89-6	Iron						
	7439-92-1	Lead	- R 142	В	N*	F		
	7439-95-4	Magnesium						
	7439-96-5	Manganese						
	7439-97-6	Mercury						
	7440-02-0	Nickel						
	7440-09-7			:				
		Selenium						
	7440-22-4	Silver						
	7440-23-5	Sodium		$oxed{oxed}$				
	7440-28-0	Thallium						
	7440-62-2	Vanadium		$oxed{oxed}$				
	7440-66-6	Zinc		\sqcup]		
* The state of the		Cyanide Tin		$ar{}$				

Color After: Pale Yellow Clarity After: Clear Artifacts: ______

Comments:

orm I - IN

7/87

SITE

. . .

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	Blank
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Water	Lab Sample ID:	J2627
Level (low/med):	Low	Date Received:	10-19-89
\$ Solids:	0.0		en en en en en en en en en en en en en e

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\mu g/L$

			<u> </u>	l	
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	3.0 V 10	u		F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	1.3-4.	В	W	F
7440-70-2	Calcium				
7440-47-3	Chromium	5.0 V LO	В		P
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	1.5 R	В	N*	F
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel	7			
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium	-			
7440-66-6	Zinc				
=	Cyanide				
	Tin				

Color Before:	Colorless	Clarity Before: Clear	Texture:	
Color After:	Pale Yellow	Clarity After: Clear	Artifacts:	_
Comments:				
				_

Form I - IN

7/87

		• .		1
Lab Name: OBG Labor	atories, Inc.	Contract:	2844.014.517	WS-5(0-3)
Lab Code:	Case No	SA	S No.:	SDG No.
Matrix (soil/water):	Soil_		Lab Sample ID:	J3025
Level (low/med):	Low		Date Received:	10-31-89

31.5

\$ Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony	-			T
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	1350.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium			· · · · · · · · · · · · · · · · · · ·	
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
•	Cyanide				

Color	Before:	Brown	Clarity Before:	 Texture:	Coarse
Color	After:	Pale Yellow	Clarity After:	 Artifacts:	None
Commer	its:				•

Form I - IN

7/87

SITE

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-5(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3026
Level (low/med):	Low	Date Received:	10-31-89
Solids:	37.7		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt			-	
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	1000.0		*	Р
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				7
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				1
7440-62-2	Vanadium				1
7440-66-6	Zinc				
	Cyanide			· <u>. </u>	

Color	Before:	Brown	Clarity	Before:	*	Texture: _	Coarse
Color	After:	Pale Yellow	Clarity	After:		Artifacts:	None
Comme	nts:						

Form I - IN

7/87

S	I	T	E
 _		-	-

			Contract: 2				•	S-5(6-12)
Lab Code:		Case No.	sas n	io.:			SDG 1	lo
Matrix (soil/wate:	r):	<u>.</u>		Lab	Sample	e ID:	J302	7
Level (low/med):	Low	-		Dat	e Rece:	ived:	10-3	1-89
* Solids:	43.6	-						
	Concent	ration Unit	s (µg/L or mg/k	g dr	y weigh	t): _	mg/k	g
	CAS No.	Analyte	Concentration	С	Q	м		
	7420 00 E						1	
	7429-90-5	Aluminum		\vdash				
	7440-36-0	Antimony					İ	
	7440-38-2	Arsenic					1	
	7440-39-3	Barium		\vdash			1	
	7440-41-7	Beryllium		\vdash			1	
	7440-43-9	Cadmium					4	
	7440-70-2	Calcium		+			1	
	7440-47-3	Chromium		\vdash			1	
	7440-48-4	Cobalt					İ	
· · ·	7440-50-8	Copper			·		1	
	7439-89-6	Iron		 				
4	7439-92-1	Lead	72.5	$\vdash \vdash$	*	 P	1	
	7439-95-4	Magnesium					1	
	7439-96-5	Manganese		-		_	1	
	7439-97-6	Mercury					1	
	7440-02-0	Nickel				$+\!\!-\!\!\!-$	1	
	7440-09-7	Potassium				+-		
tana ing pangangan pangangan pangangan pangangan pangangan pangangan pangangan pangangan pangan pangan pangan	7782-49-2	Selenium					1	
	7440-22-4	Silver					1	
	7440-23-5	Sodium		-				•
	7440-28-0 7440-62-2	Thallium Vanadium				+		
	7440-62-2	Vanadium Zinc		 		+-		
	/ ++U-00-0			 		+-	1	•
		Cyanide		-			1	
							لـ	
Color Before: B	rown	Clarity	Before:			Text	ure: _	Coarse
Color After: Ps	le Yellow	Clarity	After:		-	Arti:	facts:	None
Comments:								

Form I - IN

7/87

	S	I	T	E	
-		-	_	-	ı

Lab Code:		Case No.	SAS N	io.:		SDG	WS-5(12-14)
Matrix (soil/wate		-		_		 e ID:	
		•					
Level (low/med):	Low			Date	Rece	ived: 10	-31-89
Solids:	66.5	•	•				٠.
	Concent	ration Unit	s (µg/L or mg/kį	g dry	weigh	it): mg	/kg
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum		-			
	7440-36-0	Antimony			***************************************		
	7440-38-2	Arsenic				- 	
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9	Cadmium					
	7440-70-2	Calcium					
	7440-47-3	Chromium					
	7440-48-4	Cobalt					
	7440-50-8	Copper					
	7439-89-6	Iron					•
·	7439-92-1	Lead	18.5		*	P	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
•	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7	Potassium					
	7782-49-2	Selenium					
	7440-22-4	Silver					
	7440-23-5	Sodium		$\vdash \vdash$			•
	7440-28-0	Thallium					
er en en en en en en en en en en en en en	7440-62-2	Vanadium				 	
	7440-66-6	Zinc					•
		Cyanide					
olor Before:	Brown	Clarity	Before:			Texture:	Coarse

Power I - IN

7/87

	WS-9 (0-3)	-	217	
1		Į		
		1	1	

Lab Name: OBG Labor	eatories, Inc.	Contract:2844.014.517	WS-9 (0-3)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID	J3029
Level (low/med):	Low	Date Received	:10-31-89
\$ Solids:	20.3		
	Concentration Units	· (ug/l on ng/kg dm; waishali	77/10

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+-
7440-36-0	Antimony	477.8K		*N	P
7440-38-2	Arsenic	280.3			F
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	21.2			P
7440-70-2	Calcium				
7440-47-3	Chromium	49.3			P
7440-48-4	Cobalt				
7440-50-8	Copper	187.27			P
7439-89-6	Iron				
7439-92-1	Lead	6403.97		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	2.7		*S	F
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	280.8 J		N	P
	Cyanide				
	Tin	394.10	ם		P

Color Before:	Brown	Clarity Before: _	-	Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:	AS was analyze	ed at a 1:10 dilution	l .		
	+.				
		·	·		

Form I - IN

7/87

SITE

Lab Name: OBG	Laboratories	, Inc.	Contract:	2844	1.014.5	<u>17</u>	WS-9 (3-6)
Lab Code:		Case No.	SAS N	io.:			SDG No.
Matrix (soil/wa	iter): Soi	<u>L</u>		Lab	Sample	ID: _	J3030
Level (low/med)	Low	-		Dat	e Recei	ved: _	10-31-89
\$ Solids:	54.	5.					•
	Concent	ration Unit	s (µg/L or mg/k	g dry	/ weight	:):	ng/kg
							}
	CAS No.	Analyte	Concentration	C	Q	М	
	7429-90-5	Aluminum		1-1			
	7440-36-0	Antimony	113.84		*N	P	
	7440-38-2	Arsenic	62.0		•	F	
	7440-39-3	Barium			· · · · · · · · · · · · · · · · · · ·	+	
	7440-41-7	Beryllium				 	•
	7440-43-9	Cadmium	4.2			P	
	7440-70-2	Calcium					
	7440-47-3	Chromium	18.3			P	
	7440-48-4	Cobalt					
	7440-50-8	Copper	73.4]			P	
	7439-89-6	Iron					
	7439-92-1	Lead	899.1J		*	IP	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7	Potassium				 _	
	7782-49-2	Selenium	0.75	В	` N	F	
	7440-22-4	Silver				 	
	7440-23-5	Sodium		 		 	
	7440-28-0 7440-62-2	Thallium		 		 	
	7440-66-6	Vanadium Zinc	69.75		N	P	
	/440-00-0	Cyanide				+	
		Tin	146.80	u		P	
C. J						-	
Color Before: _	RIOMU	Clarity	Before:			rextu	re: <u>Coarse</u>
Color After: _	Pale Yellow	Clarity	After:		_ •	Artif	acts: None
Comments:	AC uma anata		111				
	AS was analyze	ed at a 1:10	allution.				

Form I - IN

7/87

	 v	•	á	40			
	 -		-	_	-	_	
						- 1	
ŧ .						- 1	
ļ						- 1	
ŧ .						1	

Lab Name: OBG Labor	ratories, Inc.	Contract:	2844.014.51	<u>.7</u>	WS-9 (6-9)	
Lab Code:	Case No.	S/	AS No.:	\$	BDG No	_
Matrix (soil/water):	Soil		Lab Sample	ID:	J3031	_
Level (low/med):	Low		Date Recei	ved: _	10-31-89	_
\$ Solids:	65.8	•				

Concentration Units (µg/L or mg/kg dry weight): _mg/kg

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony	30.4 _U J	u	*N	P
7440-38-2	Arsenic	3.8			F
7440-39-3	Barium				
7440-41-7	Beryllium		П		
7440-43-9	Cadmium	2.0	П		P
7440-70-2	Calcium				
7440-47-3	Chromium	9.1			P
7440-48-4	Cobalt				
7440-50-8	Copper	33.4			P
7439-89-6	Iron				
7439-92-1	Lead	28.9丁		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	0.55	В	N .	F
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc	12.2]		N	P
	Cyanide				
	Ťin	121.60	u		P

Color Before:	Brown	Clarity Before: _		Texture: Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts: None
Comments:		· · · · · · · · · · · · · · · · · · ·		

Form I - IN

7/87

	NIC ANALYSIS DATA SHEET				SILE		
Lab Name: OBG L	aboratories	, Inc.	Contract: 2	844.0	14.517	_	WS-2(0-3))
Lab Code:		Case No.	SAS I	···			SDG No.
Matrix (soil/wate	or): Soil	-		Lab	Sample	ID:	J3032
Level (low/med):	Low			Date	e Recei	ved:	10-31-89
\$ Solids:	15.2						
•	Concent	ration Unit	s (μg/L or mg/k	g dry	weight	:): _	mg/kg
	7429-90-5	Aluminum					
	7440-36-0 7440-38-2	Antimony Arsenic				+	
	7440-39-3	Barium					
	7440-41-7	Beryllium					·]
*	7440-43-9	Cadmium		-			. [

Color Before:	Brown	Clarity Before:		Texture: Coarse	
Color After:	Pale Yellow	Clarity After:	·.	Artifacts: None	

Comments:

7440-47-3

7440-48-4

7440-50-8

7439-89-6

7439-92-1

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Chromium

Magnesium

Manganese

Potassium

Selenium

Mercury

Nickel

Silver

Sodium

Zinc Cyanide

Thallium

Vanadium

Cobalt

Copper

Iron

Lead

P

Form I - IN

2800.0

7/87

	ı
WS-2(3-6)	1

SITE

Lab Name: OBG	Laboratories	, Inc.	Contract:	844	.014.51	7_	WS-2(3-	6)
Lab Code:	•	Case No.	SAS N	lo.:			SDG No.	
Matrix (soil/wat	ter): Soil			Lai	Sample	ID:	J3033	
Level (low/med):	Low	_		Dat	te Recei	ved:	10-31-89	
\$ Solids:	44.7	-						
	Concent	Analyte	S (µg/L or mg/k) Concentration	c dr	y weigh	t): _	mg/kg	
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium						
	7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1	Chromium Cobalt Copper Iron Lead	542.0			P		

7439-95-4

7439-96-5

7439-97-6

7440-02-0

7440-09-7

7782-49-2

7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Magnesium

Manganese

Potassium

Selenium

Thallium

Vanadium

Mercury

Nickel

Silver

Sodium

Zinc Cyanide

Color Before: ___ Brown Texture: Coarse Clarity Before: _____ Color After: Pale Yellow Artifacts: None Clarity After: Comments:

Form I - IN

7/87

Lab Name: OBG Laborat	ories, Inc.	Contract: _	2844.014.517	WS-2(6-12)
Lab Code:	Case No	SAS	No.:	SDG No.
Matrix (soil/water):	Soil		Lab Sample ID:	J3034
Level (low/med):	Low		Date Received:	10-31-89
Solids:	34.1			

Concentration Units (µg/L or mg/kg dry weight) mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum		\vdash	 	
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium		П		
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				T
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	180.0		*	P.
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
					<u> </u>

Color Before: _	Brown	Clarity Before:	Texture:	parse
Color After: _	Pale Yellow	Clarity After:	Artifacts: No	one
Comments:				

Form I - IN

7/87

SITE

Lab Name: OBG Labora	atories, Inc.	Contract: 2844.014.517	WS-2(12-15)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3035
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	47.1		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				<u> </u>
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	357.0		* *	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	j				

Color	Before:	Brown	Clarity Before:	Texture: _	Coarse
Color	After:	Pale Yellow	Clarity After:	 Artifacts:	None
Commer	nts:				
		7			

Form I - IN

7/87

Lab Name: OBG Labora	stories, Inc.	Contract:	WS-8(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3036
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	38.0		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				┼─
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				T
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				T
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron	,			
7439-92-1	Lead	1310.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				T
7439-97-6	Mercury				
7440-02-0	Nickel				T
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				i
7440-62-2	Vanadium			·	$\overline{}$
7440-66-6	Zinc				
	Cyanide				\vdash
	}				

Color Before:	Brown	Clarity Before:	-	Texture: _	Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					
				· \	

Form I - IN

7/87

Lab Name: OBG Labo	ratories, Inc.	Contract: 2844.014.517	WS-8(3-6)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3037
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	59.9		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum		-		
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				T
7440-41-7	Beryllium			-	
7440-43-9	Cadmium				1
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron			·	
7439-92-1	Lead	490.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				1
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium			-	
7440-22-4	Silver				
7440-23-5	Sodium	-			
7440-28-0	Thallium				
7440-62-2	Vanadium			····	
7440-66-6	Zinc				
	Cyanide				
					

Color	Before:	Brown	Clarity Before:		Texture: _	Coarse
Color	After:	Pale Yellow	Clarity After:	-	Artifacts:	None
Commen	ts:					
		A-		·····		

Form I - IN

7/87

Lab Name: OBG Labor	ratories	Inc.	Contract: 2844.014.517	WS-8(6-9)
Lab Code:		Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	- .	Lab Sample ID:	J3038
Level (low/med):	Low	• • • • • • • • • • • • • • • • • • •	Date Received:	10-31-89
\$ Solids:	80.7			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				П
7440-48-4	Cobalt				T
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	19.6		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before	: Brown	Clarity	Before:	-	Texture: _	Coarse
Color After:	Pale Yell	ow Clarity	After:	•	Artifacts:	None
Comments:						•

Form I - IN

7/87

SITE

Lab Name: OBG Laborat	ories, Inc.	Contract: 2844.014.517	WS-1(0-3)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3039
Level (low/med):	Low	Date Received:	10-31-89
\$ Solide:	24.4		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7	Aluminum Antimony Arsenic Barium Beryllium				
7440-43-9 7440-70-2 7440-47-3 7440-48-4	Cadmium Calcium Chromium Cobalt				
7440-50-8 7439-89-6 7439-92-1 7439-95-4	Copper Iron Lead Magnesium	1350.0			P
7439-96-5 7439-97-6 7440-02-0 7440-09-7	Manganese Mercury Nickel Potassium				
7782-49-2 7440-22-4 7440-23-5 7440-28-0	Selenium Silver Sodium Thallium				
7440-62-2 7440-66-6	Vanadium Zinc Cyanide				

Color Before	e: Brown	Clarity Before:		Texture:	Coarse
Color After	Pale Yellow	Clarity After: _	•	Artifacts:	None.
Comments:					
· ·	1 94				,

Form I - IN

7/87

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-1(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3040
Level (low/med):	Low	Date Received:	10-31-89
% Solids:	26.7		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				T T
7440-43-9	Cadmium				$\overline{}$
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	551.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel			-	
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
					T

Color Before: _	Brown	Clarity Before:	•	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

S	I	T	E	
	•	-		-

ab Code:		Case No.	sas n	lo.:			SDG No	
latrix (soil/wat				•	*	e ID:		
		•			-		,	
evel (low/med):	Low	-		Dat	e Rece	ived: _	10-31	-89
Solids:	34.3	-				•		
	Concent	ration Unit	s (µg/L or mg/k	g dry	weigh	t): <u>mg</u>	/kg	
	CAS No.	Analyte	Concentration	c	Q	м		
	CAD NO.	rulary co	Concentiation		•	"		
	7429-90-5	Aluminum						
	7440-36-0	Antimony						
	7440-38-2	Arsenic						
	7440-39-3	Barium					1	
	7440-41-7						1	
	7440-43-9	Cadmium					1.	
4 1	7440-70-2	Calcium					1	
	7440-47-3	Chromium					1	
	7440-48-4	Cobalt						•
	7440-50-8	Copper		\vdash				
	7439-89-6	Iron					1	
	7439-92-1	Lead	225.0	$\vdash \vdash$	*	P	ĺ	
	7439-95-4	Magnesium		\vdash		+		
	7439-96-5	Manganese						
	7439-97-6	Mercury					1	
	7440-02-0 7440-09-7	Nickel					1	·
								
	7782-49-2 7440-22-4			-		+	1	
	7440-22-4					+		
	7440-23-3	· · · · ·					i	
	7440-62-2	Vanadium				+-		
	7440-66-6	Zinc		-		+	1	
		Cyanide				+	•	•
							1	
							•	
lor Before:	8	Clasion	Before:			Ta	TA •	Coarse
TOT DETOLE.	PLOMU	CIEFILY	perore		-	.excu	- · ·	200130
lor After:	Pale Yellow	Clarity	After:		-	Artif	acts:	None
mments:								

Form I - IN

7/87

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-1(12-10)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil_	Lab Sample ID:	J3042
Level (low/med):	Low	Date Received:	10-31-89
% Solids:	39.2		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	14.6 U	В	•	I P
7439-95-4	Magnesium				1
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				T
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
-	Cyanide				
	1				

Color	Before:	Brown	Clarity	Before:	 	Texture:	Coarse
Color	After:	Pale Yellow	Clarity	After:		Artifacts:	None
Commen	its:				S		

Form I - IN

7/87

SITE

ab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	ES-2(0-3)
ab Code:	Case No	SAS No.:	SDG No.
fatrix (soil/water): _	Soil	Lab Sample ID:	J3043
evel (low/med):	Low	Date Received:	10-31-89
Salider	55 5		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	251.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese			-	
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before: _	Brown	Clarity	Before:		Texture:	Coarse
Color	After: _	Pale Yellow	Clarity	After:	-	Artifacts:	None
Commen	its:						

Form I - IN

7/87

SITE

	S	I	T	E	
		_			

Lab Name: OBG L	aboratories	Inc.	Contract: 2	844.(014.517		ES	5-2(3-4)
Lab Code:	-	Case No.	SAS N	lo.:			SDG No)
Matrix (soil/wate	r):Soil	Lab		Sample	ID:	J3044	,	
Level (low/med):	Low	· .		Date	e Recei	ved:	10-31	-89
\$ Solids:	71.4	- -		•				•
	Concent	ration Unit	s (µg/L or mg/k	g dry	weigh	t): <u>m</u>	g/kg	
	CAS No.	Analyte	Concentration	С	Q	м		
	7429-90-5 7440-36-0	Aluminum Antimony						
	7440-38-2 7440-39-3	Arsenic Barium				上		
	7440-41-7 7440-43-9 7440-70-2	Beryllium Cadmium Calcium						
	7440-47-3 7440-48-4	Chromium Cobalt				#		
	7440-50-8 7439-89-6	Copper Iron				上		
	7439-92-1 7439-95-4 7439-96-5	Lead Magnesium Manganese	49.4		*	P		
	7439-97-6 7440-02-0	Mercury Nickel			, , , , , ,			
	7440-09-7 7782-49-2	Potassium Selenium						
	7440-22-4 7440-23-5 7440-28-0	Silver Sodium Thallium				#		
	7440-62-2 7440-66-6	Vanadium Zinc						•
		Cyanide						
Color Before:B	rown	Clarity	Before:		_	Text	ıre:	Coarse
Color After: P	ale Yellow				- ·	Arti	facts:	None
Comments:								

Form I - IN

7/87

Lab Name: OBG Labora	stories, Inc.	Contract:	4.517 ES	-1(0-3)
Lab Code:	Case No	SAS No.: _	SDG No	•
Matrix (soil/water):	Soil	Lab :	Sample ID:J3045	
Level (low/med):	Low	Date	Received: 10-31	-89
Solids:	80.8			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

					1
CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony			**	Т
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	13.9 U			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				Г
	Cyanide				
					

Color	Before:	Brown	Clarity Before:	 Texture:	Coarse
Color	After:	Pale Yellow	Clarity After:	Artifacts:	None
Comme	nts:				

Form I - IN

7/87

SITE

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	c	Q	M
7429-90-5	Aluminum			- '	+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobelt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	21.8		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				T
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before:	Brown	Clarity Before: _		Texture: _	Coarse
Color	After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Commer	its:					

Form I - IN

7/87

Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	ES-1(6-8-5)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soi1	Lab Sample ID:	J3047
Level (low/med):	Low	Date Received:	10-31-89
% Solids:	65.2		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum		 		+
7440-36-0	Antimony		Π		
7440-38-2	Arsenic				
7440-39-3	Barium				T
7440-41-7	Beryllium				T
7440-43-9	Cadmium			-	
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				T
7440-50-8	Copper				T
7439-89-6	Iron				
7439-92-1	Lead	28.2		*	P
7439-95-4	Magnesium				T
7439-96-5	Manganese				
7439-97-6	Mercury				T
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				T
	Cyanide				1
					1

Color Before:	Brown	Clarity Before:	-	Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	. •	Artifacts:	None
Comments:					
			· · · · · · · · · · · · · · · · · · ·		
	44,				

Form I - IN

7/87

 Lab Name: OBG Laboratories, Inc.
 Contract: 2844.014.517
 WS-12(0-3)

 Lab Code: ______ Case No.
 SAS No.: _____ SDG No. _____

 Matrix (soil/water): _____ Soil _____ Lab Sample ID: ______ J3048

 Level (low/med): ______ Low ______ Date Received: ________ 10-31-89

37.1

* Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				.
7439-89-6	Iron				
7439-92-1	Lead	1860.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese			•	
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity	Before:	 Texture:	Coarse
Color After: _	Pale Yellow	Clarity	After:	 Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

Lab Name: OBG Laborate	ories, Inc.	Contract: 2	844.014.517	WS-12(3-6)	_
Lab Code:	Case No	SAS No	o.:	SDG No.	
Matrix (soil/water):	Soil		Lab Sample ID:	J3049	
Level (low/med):	Iow		Date Beceived:	10 71 90	

59.4

\$ Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic	**			
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				oxdot
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	589.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese	•			
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	Brown	Clarity Before: _	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	 Artifacts:	None
Comments:	÷		ļ	
	·			

Form I - IN

7/87

SITE

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-12(6-10)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soi1_	Lab Sample ID:	J3050
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	69.4		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				1
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium			·	
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	140.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese	•			
7439-97-6	Mercury				
7440-02-0	Nickel	,			
7440-09-7	Potassium				
7782-49-2	Selenium			14	
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before:	Brown	Clarity	Before:		Texture: _	Coarse
Color	After:	Pale Yellow	Clarity	After:	-	Artifacts:	None
Comme	nts:						
							
	·						

Form I - IN

7/87

Lab Name: OBG Labo	ratories, Inc.	Contract: 2844.014.517	WS-4(0-3)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soi1	Lab Sample ID:	J3051
Level (low/med):	Low	Date Received:	10-31-89

22.7

\$ Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	1970.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	Brown	Clarity Before:	Texture:
Color After:	Pale Yellow	Clarity After:	Artifacts: None
Comments:			

Form I - IN

7/87

SITE

	SITE
	WS-4(3-6)
SDG	No

Lab Name: OBG Labor	eatories, Inc.	Contract: 2844.014.517	WS-4(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3052
Level (low/med):	Low	Date Received:	10-31-89
% Solids:	25.8	•	

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	1570.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity Before:		Texture: _	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					
				`	

Form I - IN

7/87

Lab Name: OBG Labor	atories	, Inc.	Contract:	2844.014.517	WS-4(6-12)
Lab Code:		Case No.	SA	AS No.:	SDG No.
Matrix (soil/water):	Soi1	<u>.</u>		Lab Sample ID:	J3053
Level (low/med):	Low			Date Received:	10-31-89
% Solids:	29.2	 			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum		_		
7440-36-0	Antimony				1
7440-38-2	Arsenic				1
7440-39-3	Barium				1
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				\mathbb{I}
7439-92-1	Lead	400.0			P
7439-95-4	Magnesium			·	
7439-96-5	Manganese			•	
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				\mathbf{I}
7440-22-4	Silver				
7440-23-5	Sodium	•			
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	Brown	Clarity Before:	 Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	Artifacts:	None
Comments:				
	<u> </u>			

Form I - IN

7/87

SITE

	WS-4(12-18)
SDG	No

SITE

Lab Code: ____ Case No. ___ SAS No.: ____ Matrix (soil/water): __Soil Lab Sample II

Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517

Level (low/med): Low

Date Received: 10-31-89

\$ Solids:

45.6

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum		-		+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				\Box
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	72.4			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				1
7440-02-0	Nickel				1
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	Brown	Clarity Before:	· • • • • • • • • • • • • • • • • • • •	Texture: _	Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					
					

Form I - IN

7/87

1 Inorganic analysis data sheet

TO ARALISIS DATA SHEET	
Contract:	WS-10(0-3)
SAS No.:	SDG No.
Lah Sample ID:	J3055

Date Received: 10-31-89

SITE

% Solids: 23.3

Matrix (soil/water): Soil

Lab Code: _____

Level (low/med):

Lab Name: OBG Laboratories, Inc.

Low

Case No. _

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum				_
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	2470.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				·
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity	Before:			Texture:	Coarse
Color After:	Pale Yellow	Clarity	After:			Artifacts:	None
Comments:							
			,	·			

Form I - IN

7/87

	SITE	_
		7
- 1	WC 10(7 ()	
Į	WS-10(3-6)	

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	WS-10(3-6)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3056
Level (low/med):	Low	Date Received:	10-31-89
& Solids:	24.2	•	

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	247.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury	·			
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity Befor	e:	Texture: _	Coarse
Color After: _	Pale Yellow	Clarity After	: ·	Artifacts:	None
Comments:	₹ .				:

Form I - IN

7/87

Lab Name: OBG Laborato	ries, Inc.	Contract:	2844.014.517	WS-10(6-	12)
Lab Code:	Case No.	SA	S No.:	SDG No.	
Matrix (soil/water):S	oil_		Lab Sample ID:	J3057	·
Level (low/med): L	ow		Date Received:	10-31-89	
Solids: 3	2.6				

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	61.5			IP
7439-95-4	Magnesium	·			
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium	,			
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ţ				

Color Before:	Brown	Clarity Before:	•	Texture: _	Coarse
Color After:	Pale Yellow	Clarity After:	-	Artifacts:	None
Comments:	e e e e e e e e e e e e e e e e e e e				
					

Form I - IN

7/87

SITE

Lab Name: OBG Labora	itories, Inc.	Contract: 2844.014.517	WS-10(12-20)	
Lab Code:	Case No.	SAS No.:		
Matrix (soil/water):	Soil	Lab Sample ID:	J3058	
Level (low/med):	Low	Date Received:	10-31-89	
t Salide:	62 A			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium			·	
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	13.9 U	В		P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before	: Brown	Clarity Before:		Texture: Coarse	
Color After:	Pale Yellow	Clarity After:	-	Artifacts: None	
Comments:					
					-

Form I - IN

7/87

SITE

Lab Name: OBG Labor	entories, Inc.	Contract: 2844.014.517	WS-6(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	:
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	24.4		

Concentration Units (μ g/L or mg/kg dry weight): \underline{m} g/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				├
7440-36-0	Antimony				
7440-38-2	Arsenic			-	
7440-39-3	Barium				
7440-41-7	Beryllium			u ·	
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	897.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium	(11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 			
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc		\Box		
	Cyanide				
	} -,	-			

Color Before	Brown	Clarity	Before:	 Texture: Coarse	
Color After:	Pale Yellow	Clarity	After:	Artifacts: None	
Comments:					

Form I - IN

7/87

SITE

-	STIE	
ı		
- 1		- 1
	ES-5(0-3)	
L		

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	ES-5(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soi1_	Lab Sample ID:	J3060
Level (low/med):	Low	Date Received:	
\$ Solids:	47.1		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper -				
7439-89-6	Iron				
7439-92-1	Lead	206.0			F
7439-95-4	Magnesium				
7439-96-5 ·	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
!	Cyanide				
	•				

Color	Before:	Brown	Clarity Before:		Texture:	Coarse
Color	After:	Pale Yellow	Clarity After:	-	Artifacts:	None
Commer	its:	as .				

Form I - IN

7/87

Lab Name: OBG Laborat	ories, Inc.	Contract: 2844.014.517	ES-3(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	.13061
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	79.5		

79.5

Concentration Units (µg/L or mg/kg dry weight): _mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				_
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	22.8			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before:	Brown	Clarity Before:	Texture: <u>Coarse</u>
Color After:	Pale Yellow	Clarity After:	Artifacts: None
Comments:	•		
	 		

Form I - IN

7/87

SITE

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	ES-3(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3062
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	86.3		

Concentration Units (μ g/L or mg/kg dry weight): \underline{m} g/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				1
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	20.8			P
7439-95-4	Magnesium	•			
7439-96-5	Manganese]
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity	Before:		Texture:	Coarse
Color After: _	Pale Yellow	Clarity	After:	-	Artifacts:	None
Comments:	_					
		 	·			

Form I - IN

7/87

SITE

0000G4

Lab Name: OBG Labor	atories, Inc.	Contract: 2844.014.517	ES-6(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3063
Level (low/med):	Low	Date Received:	10-31-89
Solids:	60.4		

Concentration Units (μ g/L or mg/kg dry weight): \underline{m} g/kg

CAS No.	Analyte	Concentration	c	Q	М
7429-90-5	Aluminum			 	+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				\Box
7440-41-7	Beryllium				
7440-43-9	Cadmium				\Box
7440-70-2	Calcium				\Box
7440-47-3	Chromium				T
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	36.9			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				T
7782-49-2	Selenium				
7440-22-4	Silver				\top
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	,				

Color Before: _	Brown	Clarity Before:	Texture: <u>Coarse</u>
Color After: _	Pale Yellow	Clarity After:	Artifacts: None
Comments:	99		

Form I - IN

7/87

SITE

Lab Name: OBG Labor	ratories, Inc.	Contract: 2844.014.517	ES-6(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3064
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	82.1		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium			•	
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	73.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color B	efore:	Brown	Clarity	Before:		Texture:	Coarse	-
Color A	fter:	Pale Yellow	Clarity	After:		Artifacts:	None	
Comment	:s:							
							·	

Form I - IN

7/87

SITE

			J	
Lab Name: OBG Labor	atories, Inc.	Contract: _	2844.014.517	ES-6(6-10)
Lab Code:	Case No	SAS	No.:	SDG No.
Matrix (soil/water):	Soil_		Lab Sample ID:	J3065
Level (low/med):	Low		Date Received:	10-31-89
Solids:	77.1			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	159.0			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ţ				

Color	Before:	Brown	Clarity	Before:	 -	 Texture:	Coarse	
Color	After:	Pale Yellow	Clarity	After:	 • .	 Artifacts:	None	
Commer	its:							
					 	 		
	·							

Form I - IN

7/87

SITE

SITE

Lab Code:		Case No	SAC N	io •			SDG No
		CE36 NO		···			300 NO
Matrix (soil/water): <u>Soi</u>	<u>l</u>		Lat	Sample	ID: _	J3066
Level (low/med):	Low	_		Dat	e Rece	ived: _	10-31-89
Solids:	82.	<u>0</u>					
	Concen	tration Unit	s (µg/L or mg/k	g dr	y weigh	t): <u> </u>	g/kg
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5						
	7440-36-0						
■ The state of th	7440-38-2	1					
	7440-39-3						
	7440-41-7					 '	·
	7440-43-9			\vdash	·		
	7440-70-2	Chromium		-			
	7440-47-3			 			
	7440-50-8	Copper					
	7439-89-6					 	
	7439-92-1	Lead	536.0	\vdash		P	
· ·						 	
	7439-96-5	Manganese					
	7439-97-6						
	7440-02-0						
	7440-09-7					 	
	7782-49-2	Selenium					
	7440-22-4	Silver					
	7440-23-5						
	7440-28-0	Thallium					
2	7440-62-2						
	7440-66-6	Zinc					
t		Cyanide					

Color Before: _	Brown	Clarity Before:	•	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	-	Artifacts:	None
Comments:	-				
					

Form I - IN

7/87

Lab Name: OBG Labor	atories, Inc.	Contract:	ES-7(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3067
Level (low/med):	Low	Date Received:	10-31-89
Solids:	85.0		

Concentration Units (µg/L or mg/kg dry weight): __mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	44.4			P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium			· · · · · · · · · · · · · · · · · · ·	1
7440-28-0	Thallium				1
7440-62-2	Vanadium				\dashv
7440-66-6	Zinc			· · · · · · · · · · · · · · · · · · ·	1
_	Cyanide				1
					_

Color Before: _ Color After: _	Brown Pale Yellow	Clarity Bef	ore:	 	Coarse None
Comments:					

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	ES-7(6-8)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3068
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	85.1		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt				
7440-50-8	Copper —				
7439-89-6	Iron				
7439-92-1	Lead	38-3 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				_

Color Befo	ore: Rrown	Clarity Before:	Texture: _	Coarse
Color Afte	er: Pale Yellow	Clarity After:	Artifacts:	None
Comments:				

Form I - IN

7/87

SITE

1 Inorganic Analysis Data Sheet

	ZHOKO	MIC MANIOIS DAIR SHEEL	
Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	Dup ES-2(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID:	J3069
Level (low/med):	Low	Date Received:	10-31-89

68.4

* Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum		-		 -
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				1
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	35.4 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium	***************************************			
7440-66-6	Zinc				
•	Cyanide				

Color	Before:	Brown	Clarity Before:		Texture:	Coarse	
Color	After:	Pale Yellow	Clarity After:	•	Artifacts:	None	-
Commer	its:						
							•
							_

Form I - IN

7/87

SITE

Lab Name: OBG Labor	ratories, Inc.	Contract:2844.014.517	Dup ES-2(3-5)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soi1	Lab Sample ID:	J3070
Level (low/med):	Low	Date Received:	10-31-89
* Solids:	80.5		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony			· ·	
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	15.30		* .	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
· 	Cyanide				
	-				

Color Before:	Brown	Clarity Before:		Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

Lab Name: OBG Labor	ratories, Inc.	Contract: 2844.014.517	WS-15(0-3)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water):	Soil	Lab Sample ID:	J3071
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	80.4		

Concentration Units ($\mu g/L$ or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium		1		
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	246:0 R		*	P
7439-95-4	Magnesium				1
7439-96-5	Manganese				
7439-96-5 7439-97-6	Manganese Mercury	•			
	_			•	
7439-97-6	Mercury				
7439-97-6 7440-02-0	Mercury Nickel				
7439-97-6 7440-02-0 7440-09-7	Mercury Nickel Potassium				
7439-97-6 7440-02-0 7440-09-7 7782-49-2	Mercury Nickel Potassium Selenium				
7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4	Mercury Nickel Potassium Selenium Silver				
7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5	Mercury Nickel Potassium Selenium Silver Sodium				
7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0	Mercury Nickel Potassium Selenium Silver Sodium Thallium				
7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2	Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium				

Color Before: _	Brown	Clarity Before:	*	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

	INORG	ANIC ANALYSIS DATA SHEET	
Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	WS-15(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample I	D:

Level (low/med):

Low

Date Received: 10-31-89

Solids:

77.4

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	c	Q	м
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				1
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				1
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				T
7439-92-1	Lead	1380:0 R		· ·	P
7439-95-4	Magnesium				
7439-96-5	Manganese				T
7439-97-6	Mercury				
7440-02-0	Nickel	•			T
7440-09-7	Potassium				1
7782-49-2	Selenium				T
7440-22-4	Silver				1
7440-23-5	Sodium				T
7440-28-0	Thallium				1
7440-62-2	Vanadium				1
7440-66-6	Zinc				1
	Cyanide				
	-,				+

Color Before: _	Brown	Clarity Before:	Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	Artifacts:	None
Comments:				

Form I - IN

7/87

Lab Name: OBG Labors	tories, Inc.	Contract:	WS-15(6-8)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID	:
Level (low/med):	Low	Date Received	:10-31-89
Solids:	81.1		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	-250.0 R		*	P
7439-95-4	Magnesium	•			
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
***************************************		-			

Color	Before: _	Brown	Clarity Before:		Texture:	Coarse	
Color	After: _	Pale Yellow	Clarity After:	•	Artifacts:	None	_
Comme	nts:						
							_

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-7(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil_	Lab Sample ID:	J3074
Level (low/med):	Low	Date Received:	10-31-89
Solids:	22.9		•

Concentration Units (μ g/L or mg/kg dry weight): \underline{m} g/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum		-		+
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				T
7440-43-9	Cadmium			·	
7440-70-2	Calcium				1
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	1870.0R		*	
7439-95-4	Magnesium				7
7439-96-5	Manganese				1
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				7
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				1
	Cyanide				
	•				1

Color Before:	Brown	Clarity Before:		Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	-	Artifacts: _	None
Comments:					
· · · · · · · · · · · · · · · · · · ·					

Form I - IN

7/87

Lab Name: OBG Labora	itories, Inc.	Contract:2844.014.517	WS-7(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil_	Lab Sample ID:	J3075
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	30.3		•

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	5540.0 R		*	P
7439-95-4	Magnesium			·	
7439-96-5	Manganese				
7439-97-6	Mercury	-			
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color	Before:	Brown	Clarity Before:	Texture: Coarse
Color	After:	Pale Yellow	Clarity After:	Artifacts: None
Comme	its:			

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-7(6-12)
Leb Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID:	J3076
Level (low/med):	Low	Date Received:	10-31-89
k Salide:	55.9	•	

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum		 		
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	235.0 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury			<u> </u>	
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium			***	
7440-66-6	Zinc				
· · · -	Cyanide				

Color Before: _	Brown	Clarity Before:	Texture: Coarse
Color After: _	Pale Yellow	Clarity After:	Artifacts: None
Comments:			

Form I - IN

7/87

SITE

2116							
		_		_	_	_	

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-7(12-19)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3077
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	58.5	•	

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	8.6 R	В	*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	-				

Color	Before: _	Brown	Clarity	Before:	 Texture:	Coarse
Color	After: _	Pale Yellow	Clarity	After:	Artifacts:	_None
Commen	its:					

Form I - IN

7/87

 Lab Name:
 OBG Laboratories, Inc.
 Contract:
 2844.014.517
 WS-16(0-3)

 Lab Code:
 Case No.
 SAS No.:
 SDG No.

 Matrix (soil/water):
 Soil
 Lab Sample ID:
 J3078

 Level (low/med):
 Low
 Date Received:
 10-31-89

53.2

* Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				-
7440-36-0	Antimony				
7440-38-2	Arsenic				1
7440-39-3	Barium				
7440-41-7	Beryllium				1
7440-43-9	Cadmium				T
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				1
7439-89-6	Iron				1
7439-92-1	Lead	1590-0 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				1
7439-97-6	Mercury				
7440-02-0	Nickel				1
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				1
7440-23-5	Sodium				1
7440-28-0	Thallium				T
7440-62-2	Vanadium				
7440-66-6	Zinc				T
	Cyanide				T

Color Before: Brown Clarity Before: Texture	:Coarso_
Color After: Pale Yellow Clarity After: Artifact Comments:	ets: None
COMMETICS:	

Form I - IN

7/87

SITE

Lab Name: OBG Laboratories, Inc.		Contract: 2844.014.517	WS-16(3-5)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID:	J3079
Level (low/med):	Low	Date Received:	10-31-89
A. a	70.0		

Concentration Units (μ g/L or mg/kg dry weight): \underline{m} g/kg

CAS No.	Analyte	Concentration	С	Q	M	
7429-90-5	Aluminum				+	ı
7440-36-0	Antimony				T	ı
7440-38-2	Arsenic				1	1
7440-39-3	Barium					1
7440-41-7	Beryllium				\top	
7440-43-9	Cadmium					ı
7440-70-2	Calcium					
7440-47-3	Chronium				1	١
7440-48-4	Cobalt					İ
7440-50-8	Copper					١
7439-89-6	Iron					ı
7439-92-1	Lead	1600.0R		*	P	ı
7439-95-4	Magnesium					
7439-96-5	Manganese				<u> </u>	1
7439-97-6	Mercury					
7440-02-0	Nickel					1
7440-09-7	Potassium					ı
7782-49-2	Selenium					ı
7440-22-4	Silver				1	
7440-23-5	Sodium				-	
7440-28-0	Thallium				 	ľ
7440-62-2	Vanadium					
7440-66-6	Zinc				1	
	Cyanide					1

Color	Before:	Brown	Clarity	Before:	 Texture:	Coarse
Color	After:	Pale Yellow	Clarity	After:	 Artifacts:	None
Commer	nts:					
				·		

Form I - IN

7/87

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	ES-4(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3080
Level (low/med):	Low	Date Received:	10-31-89
* Solids:	36.3		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				-
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	628.0 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				-
7440-02-0	Nickel			-	-
7440-09-7	Potassium				
7782-49-2	Selenium				!
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
			_		
	Cyanide		ll	•	

Color	Before: Brown	Clarity Before:	Texture:Coarse
Color	After: Pale Yellow	Clarity After:	Artifacts: None
Conner	nts:		

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	ES-4(3-6)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3081
Level (low/med):	Low	Date Received:	10-31-89
* Solids:	53.5		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				T
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	177.0 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium	•			
7782-49-2	Selenium				
7440-22-4	Silver				T
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				1
7440-66-6	Zinc				†
	Cyanide				
	.,				

Color Before: _	Brown	Clarity Before:		Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

			1	
Lab Name: OBG Labor	ratories, Inc.	Contract: <u>2844.014.517</u>	ES-4(6-11)	
Lab Code:	Case No	SAS No.:	SDG No.	
Matrix (soil/water):	Soil	Lab Sample ID:	J3082	
Level (low/med):	Low	Date Received:	10-31-89	
Solids:	64.0			

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+
7440-36-0	Antimony				T
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				7
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron	·			
7439-92-1	Lead	39-7R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				_
7440-62-2	Vanadium				
7440-66-6	Zinc				
	1		\vdash		
	Cyanide				

Color	Before:	Brown	Clarity Before:	•	Texture:	Coarse
Color	After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Commen	its:					

Form T - IN

7/87

SITE

	GILE
	i
	MC 17/0 71
	WS-13(0-3)
1	

Lab Name: OBG La	boratories	, Inc.	Contract:	284	14.014.517	,	WS-13(0-3)
Lab Code:		Case No	SAS 1	No.:		-	SDG No.
Matrix (soil/water	r):Soi	1		La	b Sample	ID: _	J3083
Level (low/med):	Low	<u>′</u>		Da	te Receiv	ed: _	10-31-89
% Solids:	43.	<u>3</u>					
	Concen	tration Unit	s (μg/L or mg/k	T): <u>me</u>	:/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	171-0R		*	Р
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity Before: _	<u>-</u>	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

7/87

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	_Copper				
7439-89-6	Iron				
7439-92-1	Lead	50.8 R		*	Р
7439-95-4	Magnesium			·	
7439-96-5	Manganese				1
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ĭ				

Color Before:	Brown	Clarity	Before:		Texture:	Coarse	
Color After:	Pale Yellow	Clarity	After:	-	Artifacts:	None	,
Comments:	•						
							,
			**				

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-13(6-12)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3085
Level (low/med):	Low	Date Received:	10-31-89
k Salider	75.6		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt				
7440-50-8-	Copper				
7439-89-6	Iron				
7439-92-1	Lead	31.0R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	-				

Color Before: _	Brown	Clarity Before: _	 Texture:	Coarse
Color After: _	Pale Yellow	Clarity After: _	 Artifacts: _	None
Comments:				. *

Form I - IN

7/87

Lab Name: OBG Labora	itories, Inc.	Contract:2844.014.517	WS-13(12-16)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water):	Soil_	Lab Sample ID:	J3086
Level (low/med):	Low	Date Received:	10-31-89
\$ Solids:	82.6		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	9.6UI	В	*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium			· · · · · · · · · · · · · · · · · · ·	
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide	· · · · · · · · · · · · · · · · · · ·			
	}				

Color Before: _	Brown	Clarity Before: _	-	Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

Lab Name: OBG Labora	tories, Inc.	Contract:	2844.014.517	WS-14(0-3)
Lab Code:	Case No	SA	S No.:	SDG No.
Matrix (soil/water):	Soil		Lab Sample ID:	J3087
Level (low/med):	Low		Date Received:	10-31-89
\$ Solids:	76.4			

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				
7440-36-0	Antimony				$\overline{}$
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium	•			
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	275.0 R		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium	***************************************			
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ĩ				

Color Before: _	Brown	Clarity	Before:	•	Texture:	Coarse
Color After: _	Pale Yellow	Clarity	After:		Artifacts: _	None
Comments:						

Form I - IN

7/87

SITE

Lab Name: OBG Laborat	ories, Inc.	Contract:2844.014.517	WS-14(3-6)
Lab Code:	Case No	SAS No.:	SDG No.
(atrix (soil/water):	Soil	Lab Sample ID:	J3088
Level (low/med):	Low	Date Received:	10-31-89
. Salide:	75 7		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+-
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				T
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				1
7439-92-1	Lead	2870.0		*	P
7439-95-4	Magnesium				T
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				T
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc		М		T^{T}
	Cyanide				T
	•				1

Color Before: _	Brown	Clarity Before: _	_	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After: _	•	Artifacts: _	None
Comments:					

Form I - IN

7/87

SITE

SITE

.b Mame	DEDOIBCOLLES	, 1110.	Contract:	2044	.014.	<u>)1 /</u>	WS-14(6-1
b Code:	 .	Case No	SAS N	io.:		SD	G No.
trix (soil/wa	ter): Soi	<u>1</u>		Lab	Sampl	e ID:	J3089
vel (low/med)	: Low	_		Date	e Rece	ived:	10-31-89
Solids:	66.	5					
	Concent	ration Unit	s (µg/L or mg/k	g dry	weigh	nt): mg/k	.g
				П			-
	CAS No.	Analyte	Concentration	C	Q	M	
	7429-90-5	Aluminum					
	7440-36-0	Antimony					
	7440-38-2	Arsenic					
	7440-39-3						
	7440-41-7						
	7440-43-9						
	7440-70-2						
	7440-47-3	Chromium					
	7440-48-4	Cobalt		1			
	7440-50-8	Copper					
	7439-89-6	Iron					
	7439-92-1	Lead	145.0		•		
	7439-95-4	Magnesium					
	7439-96-5	Manganesé					
	7439-97-6	Mercury		1-1-			
	7440-02-0	Nickel					
	7440-09-7	Potassium					
	7782-49-2	Selenium			· · · · · · · · · · · · · · · · · · ·	- 	
	7440-22-4	Silver			····		
	7440-23-5			 		 	
	7440-28-0	Thallium		\vdash		 	
	7440-62-2	Vanadium		 		 	
	7440-66-6			 		- 	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cyanide		 			
		0/220					
D. C	_						
			Before:				Coarse
or After: _	Pale Yellow	Clarity	After:		-	Artifac	ts: None
ments:							
							

Form I - IN

7/87

SITE

			Contract:				WS-14(12-17
ab Code:		Case No	SAS N	lo.:			SDG No.
fatrix (soil/wa	ter): Soil	_		La	b Sample	D:	J3090
evel (low/med)	: Low	_		Dat	te Recei	ved:	10-31-89
Solids:	65.0	<u>-</u>				•	
	Concent	ration Unit	s (µg/L or mg/k	g dr	y weigh	t): <u>m</u>	g/kg
	CAS No.	Analyte	Concentration	С	Q	м	
•	7429-90-5	Aluminum				-	
	7440-36-0	Antimony				\dashv	·
	7440-38-2	Arsenic					'
	7440-39-3	Barium			······································	\top	
	7440-41-7	Beryllium					
	7440-43-9	Cadmium					'
	7440-70-2	Calcium					
	7440-47-3	Chromium					
	7440-48-4	Cobalt	•				
	7440-50-8	Copper					
	7439-89-6	Iron					
	7439-92-1	Lead	20.0 8.211	В	+	Р	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
	7440-02-0	Nickel					
	7440-09-7						
	7782-49-2						
	7440-22-4						
	7440-23-5						
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
		Cyanide					
lor Before: _		Clarity	Before:		-	Text	ure:
lor After:		Clarity	After:			Arti	facts:
ents:							

Form I - IN

7/87

Lab Name: OBG Laboratories, Inc. Contract: 2844.014.517 WS-3(0-3)

SITE

Lab Code: _____ Case No. ____ SAS No.: ___ SDG No. ___

Matrix (soil/water): ___Soil

Level (low/med): Date Received: 10-31-89 Low

\$ Solids: 41.2

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum				+
7440-36-0	Antimony				1
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				1
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	816.0		*	Р
7439-95-4	Magnesium	· · · · · · · · · · · · · · · · · · ·			
7439-96-5	Manganese			· · · · · · · · · · · · · · · · · · ·	7
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				1
7440-28-0	Thallium				1
7440-62-2	Vanadium				1
7440-66-6	Zinc				1
	Cyanide				
***************************************	• -				1

Color Bef	ore: Brown	n Clarit	y Before:	 Texture:	Coarse
Color Aft	er: Pale	Yellow Clarit	y After:	 Artifacts:	None
Comments:					
			_		

Form I - IN

7/87

Lab Name: OBG Labor	stories, Inc.	Contract:2844.014.517	WS-3(3-6)
Lab Code:	Case No.	SAS No.:	SDG No.
(atrix (soil/water):	Soil	Lab Sample ID:	J3092
Level (low/med):	Low	Date Received:	10-31-89
Solids:	25.2		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				†
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	2220.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium	-			
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				T
	•				

Color	Before:	Brown	Clarity	Before:	-	Texture:	Coarse
Color	After:	Pale Yellow	Clarity	After:	•	Artifacts: _	None
Commer	its:						
				,			

Form I - IN

7/87

SITE

SITE

ab Name: OBG L	aboratories	Inc.	Contract:	2844	.014.5	17	WS-3(6-12)
eb Code:		Case No	SAS N	io.:			SDG No.
atrix (soil/wate	r):Soi!	<u>L</u>		Lab	Sample	ID: _	J3093
evel (low/med):	Low	-		Date	e Recei	.ved: _	10-31-89
Solids:	25.0	<u>5</u>					
	Concent	ration Unit	s (µg/L or mg/k)	g dry	weigh	t): <u>m</u> g	g/kg
	CAS No.	Analyte	Concentration	С	Q	м	
	7429-90-5	Aluminum					
	7440-36-0	Antimony				+	
	7440-38-2						
	7440-39-3						
	7440-41-7						·
·	7440-43-9						
	7440-70-2						
•	7440-47-3						
†		Cobalt					
	7440-50-8	Copper				4	
	7459-89-6						
Ĭ	7439-92-1	Lead	329.0	$\vdash \vdash$	*	<u> </u>	
	7439-95-4 7439-96-5	_				+	1
	7439-90-5			-			
	7440-02-0					+	
1	7440-09-7			-			
	7782-49-2					+	
	7440-22-4			$\vdash \vdash$		+	
İ	7440-23-5			-			
I	7440-28-0	Thallium			**********	 -	
	7440-62-2						
	7440-66-6	Zinc				 	
		Cyanide			······································		· .
Į		•					
lor Before:	Brown	Clarity	Before:			Textu	re: Coarse
					-		
lor After:	raie iellow	Clarity	After:		_	Artif	acts: None
mments:							

Form I - IN

7/87

Lab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	WS-3(12-15)
Lab Code:	Case No.	SAS No.:	SDG No.
Matrix (soil/water): _	Soil	Lab Sample ID:	J3094
Level (low/med):	Low	Date Received:	10-31-89
. Solide.	51.7		

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum		├─		
7440-36-0	Antimony				1
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	108.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				

Color Before: _	Brown	Clarity Before:	-	Texture:	Coarse
Color After: _	Pale Yellow	Clarity After:	-	Artifacts:	None
Comments:					
		<u></u>			

Form I - IN

7/87

SITE

SITE

Lab Code: Case No Matrix (soil/water):Soil		Case No.	SAS N	io.:			SDG No.	•
		Lab Sample			e ID:		5	
evel (low/med):	Low			Dat	e Rece	ived:	10-3	1-89
Solids:	45.	3						
	Concen	tration Unit	s (µg/L or mg/k	g dry	/ weigh	it): <u>m</u>	g/kg	
	CAS No.	Analyte	Concentration	С	Q	м		
	7429-90-5	Aluminum				+-		
	7440-36-0	•				1		
	7440-38-2							
	7440-39-3						1	
	7440-41-7						1	
	7440-43-9	l l						
	7440-70-2	•]	
		Chromium					ŀ	
	7440-48-4							
	7440-50-8				···			
	7439-89-6	1					1	
	7439-92-1	Lead	1890.0			P		
	7439-95-4						1	
	7439-96-5	_		-			1	
		Mercury						
	7440-02-0						1	
•		Potassium						
		Selenium		-		+		
	7440-22-4			 				
	7440-23-5	Thallium					j	
	7440-28-0	Vanadium		 		+		
	7440-66-6	Zinc		-				
	, 440-00-0	Cyanide						
		3,2200]	
			-			-		
lor Before:	Brown	Clarity	Before:		_	Text	re:	Coars
lor After:	Pale Yellow	Clarity	After:		_	Arti	acts:	None
mments:								

Form I - IN

7/87

SITE	

ab Code:		Case No	SAS N	io.:		SDG No) .
atrix (soil/wate	•					ID:	
evel (low/med):	Low				_	ved: 10-3	
Solids:	74.2	- 2					
		-					
	Concent	ration Unit	s (µg/L or mg/k	g dr	y weigh	t): mg/kg	
	CAS No.	41	Canadanasian			T _M	
	CAS NO.	Analyte	Concentration	C	Q	M	
	7429-90-5	Aluminum					
	7440-36-0	Antimony					
	7440-38-2						
	7440-39-3	Barium					
	7440-41-7	Beryllium					
	7440-43-9						
	7440-70-2						
	7440-47-3						
	7440-48-4						
	7440-50-8						
,	7439-89-6	ì					
	7439-92-1	Lead	110.0		*	P	
	7439-95-4	Magnesium					
	7439-96-5	Manganese	•				
	7439-97-6	Mercury					
		Nickel					
	7440-09-7					I	
	7782-49-2	Selenium					
	7440-22-4						
	7440-23-5	Sodium					
	7440-28-0	Thallium					
	7440-62-2	Vanadium					
	7440-66-6	Zinc					
		Cyanide					
l							
lor Before: I	Rrown	Clamity	Before:			Texture:	Coarse
		CIGILITY			-		

Form I - IN

7/87

000101

ab Name: OBG Labora	tories, Inc.	Contract: 2844.014.517	WS-17(6-9)	
ab Code:	Case No.	SAS No.:	SDG No.	
atrix (soil/water): _	Soi1	Lab Sample ID:	J3097	
evel (low/med):	Low	Date Received:	10-31-89	

73.8

* Solids:

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				_
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chronium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	33.7		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				
7440-22-4	Silver	C			
7440-23-5	Sodium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide				
	Ť				

Color Before: _	Brown	Clarity	Before:	Texture:	Coarse
Color After: _	Pale Yellow	Clarity	After:	Artifacts: _	None
Comments:					
				 ·	

Form I - IN

7/87

SITE

000102

		•	·
Lab Name: OBG Labora	tories, Inc.	Contract:2844.014.517	WS-11(0-3)
Lab Code:	Case No	SAS No.:	SDG No.
Matrix (soil/water): _	Soi1	Lab Sample ID:	J3098
Level (low/med):	Low	Date Received:	10-31-89
k Solids:	42.0		

Concentration Units ($\mu g/L$ or mg/kg dry weight): $\underline{mg/kg}$

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum				
7440-36-0	Antimony			-	
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium	`			
7440-43-9	Cadmium				
7440-70-2	Calcium				
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	23700.0		*	P
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				T
7440-02-0	Nickel				T
7440-09-7	Potassium				
7782-49-2	Selenium				T-
7440-22-4	Silver				
7440-23-5	Sodium			· 	
7440-28-0	Thallium				
7440-62-2	Vanadium				T
7440-66-6	Zinc				
	Cyanide				
					\top

Color	Before:	Brown	Clarity	Before:	-	Texture:	Coarse
Color	After:	Pale Yellow	Clarity	After:		Artifacts:	None
Commen	its:						

Form I - IN

7/87

Concentration Units (µg/L or mg/kg dry weight): mg/kg

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum				+-
7440-36-0	Antimony				1
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium				1
7440-47-3	Chromium				
7440-48-4	Cobalt				T
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead	59700.0		*	Р
7439-95-4	Magnesium				
7439-96-5	Manganese				
7439-97-6	Mercury				
7440-02-0	Nickel				
7440-09-7	Potassium				
7782-49-2	Selenium				1
7440-22-4	Silver				
7440-23-5	Sodium				\top
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
	Cyanide		П	· · ·	1

Color Before:	Brown	Clarity Before:		Texture:	Coarse
Color After:	Pale Yellow	Clarity After:	•	Artifacts:	None
Comments:					

Form I - IN

7/87

SITE

000164

SITE

Code:		Case No	SAS N	io.:		SDG No	·
rix (soil/wate	er): Soil			Lab	Sampl	e ID:	0
rel (low/med):	Low	_		Dat	e Rece	ived: 10-3	1-89
olids:	77.4	-					
	Concent	ration Unit	s (µg/L or mg/k	g dry	r weigh	nt): mg/kg	
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum		\vdash			
	7440-36-0	Antimony		\vdash			
	7440-38-2	Arsenic		+			
	7440-39-3	Barium				1	
	7440-41-7	Beryllium				1	
•	7440-43-9	Cadmium					
	7440-70-2	Calcium					
	7440-47-3	Chromium					
	7440-48-4	Cobalt					
	7440-50-8	Copper					
_	7439-89-6	Iron					
	7439-92-1	Lead	702.0		*	P	
	7439-95-4	Magnesium					
	7439-96-5	Manganese					
	7439-97-6	Mercury					
•	7440-02-0	Nickel				<u> </u>	
	7440-09-7	Potassium			·		
	7782-49-2	Selenium					
	7440-22-4	Silver					
	7440-23-5	Sodium					
	7440-28-0	Thallium					
•	7440-62-2	Vanadium					
	7440-66-6	Zinc					
		Cyanide		lacksquare			
or Before:	Brown	Clarity	Before:		_	Texture:	Coars
or After:	Pale Yellow	Clarity	After:		-	Artifacts:	None
ments:							
**							

Form I - IN

7/87

000105

Laboratory Report

DATE COLLECTED	10-16/17-89	DATE REC'D.	10-19-89	DATE ANALYZED	
***************************************	Waters				
DESCRIPTION	Pedricktown,	NJ			
CLIENT	NL INDUSTRIES,	INC.		JOB NO	2844.014.517

	Sample #	SULFATE	CHLORIDE	
and the second s		Stranger and a section		
ES-2	J2612	100.	55.	
ES-5 WS-17	J2615	30.	38.	
ES-7	J2616	140.	8.	
ES-3	J2617 J2618	73. 57.	22. 21.	
Well 16	J2619	31.	21.	
Well 17	J2620	13.		
Well 13	J2621	3.U_		
Well 14	J2622	30.		
Well 15	J2623	22.		
NS -12	J2624	9.	12.	
Rinse Blk. Water	J2625	1.	<1.U	
Field Blk.	J2627	<1. U	<1.0	
			UNITS: mg/1	

Methodology: Federal Register - 40 CFR, Part 136, October 26, 1984

Comments:

OBG Laboratories, Inc., an O'Brien & Gere Limited Company. Box 4942 / 1304 Buckley Rd. / Syracuse, NY 13221 / (315) 457-1494 Units: mg/i (ppm) unless otherwise noted

- CADDA 000167

Authorized: __

Date:

December 14, 1989

NLI 001 1149

Laboratory Report

DESCRIPTION	Pedricktown, NJ					
	Waters					
DATE COLLECTED	10-16/17-89 DA	TE REC'D. 10-19-	89 .	DATE ANALYZ	ED	
		1	i	1 1		1
		Sample #	SULFATE	CHLORIDE		
		•				
WS-9	de se Salestanderes de Parel de Principal de l'Art	J2597	460.	34.	:	1 553 A 14 14 14 15
WS-8		J2600	740.	38.		
WS-5		J2601	230.	17.		
WS-4		J2602	170.	19.		
WS-7		J2603	1200.	31.		
WS-6		J2604	240.	19.		
WS-11	la andrewina sprana ya kwala	J2605	34.	19.		
WS-1		J2606	170.	22.		
WS-2		J2607	170.	19.		·
WS-3		J2608	180.	17.		
ES-6		J2609	19.	6.		
WS-16		J2610	140.	5.		
ES-1		J2611	600.	230.		
			,			
					Y	
 •						
	and the second s				•	
				UNITS		

Methodology: Federal Register - 40 CFR, Part 136, October 26, 1984

Comments:

OBG Laboratories, Inc., an O'Brien & Gere Limited Company Box 4942 / 1304 Buckley Rd. / Syracuse, NY 13221 / (315) 457-1494 Units: mg/; (ppm) unless etherwise note

Authorized: Medel W. Villelli

ete: <u>December 14, 1989</u>

NLI 001 1150

Purgeable Priority Pollutants

ESCRIPTION Pedrick	ctown, NJ -	- Water Sa		JOB		
ATE COLLECTED 10-16,1	7-89 DATE	REC'D. 10-1	9-89	DATE ANALYZ	ED 10-24	-89
DESCRIPTION:	Well Br	Well 11	Well 11R-	Well 11R- BP	Well 18	Field Blank
SAMPLE NO.:	J2628	J2629	J2630	J2631	J2632	J2635
Chloromethane	<1. U	<10.U	<1.U	<1. U	<1.0	<1.0
Bromomethane	<1.0					
Vinyl chloride	9.5					
Chloroethane	<1.0					
Methylene chloride						
1,1-Dichloroethene		160.				
1,1-Dichloroethane		50. J				
t-1,2-Dichloroethene		<10.V				
Chioroform	1 1	1				
1,2-Dichloroethane						
1,1,1-Trichloroethane	-	1900.	5.7			
Carbon tetrachloride		<100.V	<1.0			
Bromodichloromethane		<100.U	` .``			
1,2-Dichloropropane		<10.V				
t-1,3-Dichloropropene				1		
Trichloroethene						
Benzene						
Dibromochloromethane						
1,1,2-Trichloroethane						
c-1,3-Dichloropropene				J	↓	
2-Chloroethylvinyl ether	<10.U	<100.U	<10.U	<10.V	<10. U	<10.V
Bromoform	<10.U	<100.V	<10.U	<10.0	<10.U	<10.U
1.1.2.2-Tetrachioroethane	<1.U	<10. V	<1.V	<1.V	<1.V	<1.V
Tetrachloroethene		57.			1	
Toluene		<10.U				
Chiorobenzene						
Ethylbenzene						
Xylenes]			<u> </u>	↓	
,	*			¥	Ţ	
				ini	ITS: µg/l	
lethodology: Federal Register40	1 050 0 400 0	1 1	'		: mg:/ (DED) Jules	t s otherwise :

Comments:

OBG Laboratories, Inc. Box 4942 / 1304 Buckley Rd. / Syracuse, NY 13221 / (315) 457-1494

Date: ___ December 14, 1989__

001 1151 NLI

Laboratory Report

CLIENTNL	INDUSTRIES, I	NC.			ON BOL	2844.0	015.517
DESCRIPTION	Pedricktown,	NJ -	Water	Samples			
DATE COLLECTED	10-16,17-89	DATE REC'D.	10-19-	89	DATE ANALYZE	D 10-24	-89
Description	·	Well Br	Well 11	Well 11R- AP	Well 11R- BP	Well 18	Field Blank
Sample #		J2628	J2629	J2630	J2631	J2632	J2635
Dichlorodifluor Trichlorofluoro 1,2-Dichlorober 1,3-Dichlorober 1,4-Dichlorober	omethane nzene	<1.V	<10.0	v	<1.V	<1.V	<1.V
	-				UNITS	: µg/1	

Methodology: Federal Register - 40 CFR, Part 136, October 26, 1984

Comments:

OBG Laboratories, Inc., an O'Brien & Gere Limited Company Box 4942 / 1304 Buckley Rd. / Syracuse, NY 13221 / (315) 457-1494 Units: mg// (ppm) unless otherwise noted

Authorized: Medal V. Letter 1989

Dete: _____ December 14, 1989

NLI 001 1152

Attachments

ATTACHMENT 1

NL-IP9 1989

SOP NO. HW-6 Revision #6

CLP ORGANICS DATA REVIEW AND PRELIMINARY REVIEW

NCURRED BY:	Iouis Bevilacqua (Monitoring Management Branch	Date: 4/4/89	
♪PPROVED BY:_	Gerard F. McKenna, Chief Monitoring Management Branch	Date: 4/14/8/	

Date: March 1989

Revision 6

INTRODUCTION TO DATA VALIDATION

10 Scope

- 1.1 This procedure is applicable to organic data obtained from contractor laboratories working for the Contract Laboratory Program (CLP).
- 1.2 The data validation is based upon analytical and quality assurance requirements specified in the Statement of Work (SOW).

2.0 Responsibilities

Data reviewers will complete the following tasks as assigned by the Data Review Coordinator:

- 2.1 Data Assessment The reviewer must answer every question on the checklist. All response shall be in ink.
- 2.2 Data Assessment Narrative (Attachment 1) Data reviewer is required to use these forms and must match the action in the narrative with the action taken on the Form I(s).
- 2.3 Rejection Summary Form (Attachment 2) Fill in the total number of analytes measured by different analyses and the number of analytes rejected or flagged as estimated due to corresponding quality control criteria. Place an "X" in the boxes where analyses were not performed or criteria do not apply.
- 2.4 Organic Regional Data Assessment Data reviewer is also required to fill out Organic Regional Data Assessment Form (Attachment 3).
- 2.5 Telephone Record Log The data reviewer should enter the bare facts of inquiry before initiating any authorized telephone conversation with a CLP laboratory. After the case review has been completed, mail the white copy of the Telephone Record Log to the laboratory and the pink copy to SMD. File the yellow copy in the Telephone Record Log folder and attach a photocopy of the Telephone Record Log to the completed Data Assessment Narrative.
- 2.6 Forwarded Paperwork Upon completion of the review, the following are to be forwarded to the Regional Sample Control Center (RSCC) located in the Surveillance and Monitoring Branch:
 - a. data package
 - b. completed assessment checklist
 - c. SMO Contract Compliance Screening (CCS)

Forward four (4) copies of the completed Data Assessment Narrative along with four (4) copies of the Organic Data Assessment Form: one each for the appropriate Regional DPO, the Sample Management Office (SMO), and to the last two addresses of the Data Reviewers Mailing List.

- 2.7 Filed Paperwork Upon completion of the review, the following are to be filed within the Monitoring and Management Branch (MMB) files:
 - a. Telephone record Log (copy)
 - b. Record of Communication (original)
 - c. Rejection Summary Form

- 3.0 <u>Rejection of Data</u> All values determined to be unacceptable on the Organic Analysis Data Sheet (Form I) must be flagged with an "R". As soon as review criteria causes data to be rejected, that data can be eliminated from any further review or consideration.
- 4.0 <u>Acceptance Criteria</u> In order that the reviews be consistent among reviewers, this Standard Operating Procedure (SOP) should be used. Additional guidance can be found in the Functional Guidelines.
- -.0 <u>SMO Contract Compliance Screening (CCS)</u> This is intended to aid the reviewer in locating any problems, both corrected and uncorrected. However, the validation should be carried out even if CCS is not present. Resubmittals received from the laboratory in response to CCS must be used by the reviewer.

Date: March 1989 Revision 6

CKAGE COMPLETENESS AND DELIVERABLES CASE NUMBER: LAB: O Data Completeness and Deliverables YES NO N/A 1.1 Have any missing deliverables been received and added to the data package. ACTION: Call lab for explanation / resubmittal of any missing deliverables. If lab cannot provide them, note the effect on review of the package under the "Contract Problems/Non-compliance" section of reviewer narrative. 1.2 Was SMO CCS checklist included with package? 2.0 Cover Letter/Case Narrative 2.1 Is the Narrative or Cover Letter present? 2.2 Are Case Number and/or SAS number contained in the Narrative or Cover Letter?) Data Validation Checklist The following checklist is divided into three parts. Part A is filled out if the data package contains any VOA analyses, Part B for any BNA analyses and Part C for Pesticide/PCBs. Does this package contain: VOA data? BNA data?

Pesticide/PCB data?

ACTION: Complete corresponding parts of checklist.

ACTION: If holding times are exceeded, flag all positive results as

were exceeded.

estimated ("J") and sample quantitation limits as estimated ("UJ"), and document in the narrative that holding times

NLI 001

1159

Revision 6

N/A

YES

If analyses were done more than 14 days beyond holding time, either on the first analysis or upon reanalysis, the reviewer must use professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. The reviewer may determine that non-detect

data are unusable ("R").

3.	0	Surrogate	Recovery	(Form	II)

-			•			
3.1			VOA Surrogate Recovery Summaries (Form II) present of the following matrices:			
	a.	Low	Water			
	b.	Med	Water	[]		<u>√</u>
	c.	Low	Soil	[]		<i>i</i> 2.
	d.	Med	Soil	[]		<u>~</u>
3.2			the VOA samples listed on the appropriate Surrogate Summaries for each of the following matrices:			
	a.	Low	Water			
	b.	Medi	Water	[]		<u> </u>
	c.	Low	Soil	[]		<u> </u>
	d.	Med	Soil			<u> </u>
	ACT	ION:	Call lab for explanation / resubmittals. If missing deliverables are unavailable, document effect on data under "Conclusions" section of reviewer narrative.			
3.3	Were	e out	liers marked correctly with an asterisk?			
	ACT	ION:	Circle all outliers in red.			
3.4			or more VOA surrogate recovery outside of contract rations for any sample or method blank?			
	If y	yes,	were samples reanalyzed?	[]		<u>~</u>
	Were	e met	hod blanks reanalyzed?	[]		<u> </u>
	ACT	EON:	If surrogate recoveries are > 10% but all do not meet SOW specifications:			
			 Flag all positive results as estimated ("J"). Flag all non-detects as estimated detection limits ("W"). 		·	

STANDARD OPERATING PROCEDURE

Page: 6 of 36 Date: March 1989 Revision 6

		If any surrogate has a recovery of <10%:	YES	NO	N/A
		 Flag all positive results as estimated ("J"). Flag all non-detects as unusable ("R"). 			
		Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. Check the internal standard areas.			
		re any transcription/calculation errors between raw Form II?	********		
A	CTION:	If large errors exist, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			•
4.0 Matri	x Spike	s (Form III)			
	s the M resent?	atrix Spike Duplicate/Recovery Form (Form III)	[\sum_1		
		rix spikes analyzed at the required frequency of the following matrices:			
a	. Low	Water	[<u>\</u>]		
b.	. Med	Water	[]		<u> </u>
C	. Low	Soil	[]	* dissipate y ***	/
đ	. Med	Soil	[]		\checkmark
A	CTION:	If any matrix spike data are missing, take the action specified in 3.2 above.			
4.3 H	ow many	VCA spike recoveries are outside QC limits?			
		Water Soils			
	•	Out of 10 out of 10			
		RPD's for matrix spike and matrix spike e recoveries are outside QC limits?			
		Water Soils			
	نظفه	O out of 5 out of 5			
A	CTION:	If MS and MSD both have less than 10% recovery for an analyte, negative results for that analyte should be rejected, and positive results should be flagged "J". The above applies only to the sample used for the MS/MSD analysis. Use professional	NI.	I 0 01	1161
		judgement in applying this criterion to other samples in the rackage	***		

Page: 7 of 36 Date: March 1989

Revision 6

		1/200		N1 (2)
		YES	NO	N/A
5.0	Blanks (Form IV)			
	5.1 Is the Method Blank Summary (Form IV) present?	[<u>√</u>]		
	5.2 Frequency of Analysis: for the analysis of VOA TCL compounds, has a reagent/method blank been analyzed for each set of samples or every 20 samples of similar matrix (low water, med water, low soil, medium soil), whichever is more frequent?	[\sqrt{1}		
	5.3 Has a VOA instrument blank been analyzed at least once every twelve hours for each GC/MS system used?		*******	
	ACTION: If any method blank data are missing, call lab for explanation / resubmittal. If not available, reject all associated positive data ("R").			
	5.4 Chromatography: review the blank raw data - chromatograms (RICs), quant reports or data system printouts and spectra.			
	Is the chromatographic performance (baseline stability) for each instrument acceptable for VOAs?	$\lfloor \sqrt{1} \rfloor$		
	ACTION: Use professional judgement to determine the effect on the data.			
6.0	Contamination			
•	NOTE: "Water blanks" and "distilled water blanks" are validated like any other sample and are <u>not</u> used to qualify data. Do not confuse them with the other QC blanks discussed below.			
	6.1 Do any method/instrument/reagent blanks have positive results (TCL and/or TIC) for VCAs? When applied as described below, the contaminant concentration in these blanks are multiplied by the sample Dilution Factor.	<u>/</u>	. []	
	6.2 Do any field/trip/rinse blanks have positive VOA results (TCL and/or TIC)?		[]	
	ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)			
	NOTE: Only field/rinse blanks taken the same day as the samples are used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Blanks may be qualified for surrogate, spectral, tuning or calibration QC problems.			

YES

N/A ACTION: Follow the directions in the table below to qualify TCL results due to contamination. Use the largest value from all the associated blanks. Sample conc > CROL Sample conc < CROL & Sample conc > CROL but < 10x blank is < 10x blank value value & >10x blank value Methylene chloride Flag sample result Reject sample result No qualification Acetone with a 'U'; cross and report CRQL; is needed out 'B' flag cross out 'B' flag Toluene 2-butanone Sample conc > CRQL Sample conc < CRQL & Sample conc > CRQL but < 5x blank value value & > 5 blank value Flag sample result Reject sample result No qualification Other: with a 'U'; cross and report CRQL; Contaminants is needed out 'B' flag cross out 'B' flag For TIC compounds, if the concentration in the sample is less than five times the concentration in the most contaminated associated blank, flag the sample data "R" (unusable). 6.3 Are there field/rinse/equipment blanks associated with every sample? Trip No Floor was analyzed ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks. 7.0 GC/MS Tuning and Mass Calibration (Form V) 7.1 Are the GC/MS Tuning and Mass Calibration Forms (Form V) present for Bramofluorobenzene (BFB)? 7.2 Are the enhanced bar graph spectrum and mass/charge (m/z) listing for the BFB provided for each twelve hour shift? 7.3 Has a tuning performance compound been analyzed for every twelve hours of sample analysis per instrument? ACTION: If any tuning data are missing, take action specified in 3.2 above. ACTION: List date, time, instrument ID, and sample analyses for which no associated GC/MS tuning data are available.

NO

N/A

YES

DATE TIME INSTRUMENT SAMPLE NUMBERS If lab cannot provide missing data, reject ("R") all data generated outside an acceptable twelve hour calibration interval. 7.4 Have the ion abundance criteria been met for each instrument used? ACTION: List all data which do not meet ion abundance criteria (attach a separate sheet). If tuning calibration is in error, flag all ACTION: associated sample data as unusable ("R"). However, if expanded ion criteria are met (See 1988 Functional Guidelines), the data reviewer may accept data with appropriate qualifiers. 7.5 Are there any transcription / calculation errors between mass lists and Form Vs? (Check at least two values but if errors are found, check more.) 7.6 Have the appropriate number of significant figures (two) been reported? (Check at least two values, but if errors are found check more values.) If large errors exist, call lab for explanation / resubmittal, make necessary corrections and note errors under "Conclusions". 7.7 Are the spectra of the mass calibration compound acceptable? ACTION: Use professional judgement to determine. whether associated data should be accepted, qualified, or rejected. .. 0 Target Compound List (TCL) Analytes 8.1 Are the Organic Analysis Data Sheets (Form I VOA) present with required header information on each page, for each of the following: a. Samples and/or fractions as appropriate b. Matrix spikes and matrix spike duplicates c. Blanks

"N" (presumptive evidence of the presence of the compound) or changed to not detected (at

the calculated detection limit).

-				Kevision	. 6	
				YES	NO	N/A
٥.٠	Ten	tatively	Identified Compounds (TIC)			
	9.1	Part B)	Tentatively Identified Compound Forms (Form I, present; and do listed TICs include scan number ation time, estimated concentration and "J" or?			
	9.2	compound	mass spectra for the tentatively identified is and associated "best match" spectra included ample package for each of the following:	_		
		a. Sampl	es and/or fractions as appropriate			
		b. Blank	S			
		ACTION:	If any TIC data are missing, take action specified in 3.2 above.			
		ACTION:	Add "J" qualifier if missing and "N" qualifier to all <u>identified</u> TIC compounds on Form I, Part B.			
	9.3	TIC comp	TCL compounds (from any fraction) listed as counds (example: 1,2-dimethylbenzene is xylene—L—and should not be reported as a TIC)?	*********		
		ACTION:	Flag with "R" any TCL compound listed as a TIC.			
	9.4	relative	ions present in the reference mass spectrum with a intensity greater than 10% also present in the mass spectrum? - No Thomas present	1	-	<u>\</u>
	9.5		and "best match" standard relative ion intensities thin 20%?	[]		\checkmark
		ACTION:	Use professional judgement to determine acceptability of TIC identifications. If it is determined that an incorrect identification was made, change identification to "unknown" or to some less specific identification (example: "C3 substituted benzene") as appropriate.			
0.6	0 <u>Cor</u>	mpound Ou	antitation and Reported Detection Limits			
	10	Form I Verify ion, a	ere any transcription / calculation errors in results? Check at least two positive values. In that the correct internal standard, quantitation and RRF were used to calculate Form I result. The proof of the correct internal standard, quantitation and RRF were used to calculate Form I result.			_
	10		e CRQIs adjusted to reflect sample dilutions for soils, sample moisture?	<u> </u>		سيبين

KENTZIOU (

NO

N/A

YES

resubmittal, make any necessary corrections and note errors under "Conclusions". ACTION: When a sample is analyzed at more than one dilution, the lowest CROIs are used (unless a QC exceedance dictates the use of the higher CRQL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package. 1.0 Standards Data (GC/MS) 11.1 Are the Reconstructed Ion Chromatograms, and data system printouts (Quant. Reports) present for initial and continuing calibration? ACTION: If any calibration standard data are missing, take action specified in 3.2 above. '.0 GC/MS Initial Calibration (Form VI) 12.1 Are the Initial Calibration Forms (Form VI) present and complete for the volatile fraction? ACTION: If any calibration standard forms are missing, take action specified in 3.2 above. 12.2 Are response factors stable for volatiles over the concentration range of the calibration (RSD <30%)? ACTION: Circle all outliers in red. ACTION: When RSD >30%, non-detects may be qualified using professional judgement. Flag all positive results "J". When RSD >90%, flag all non-detects as unusable ("R"). (Region II policy.) 12.3 Do any compounds have a RRF < 0.05? ACTION: Circle all outliers in red. If any volatile compound has an average ACTION: RRF < 0.05, flag positive results for that compound as estimated ("J"), and flag nondetects for that compound as unusable ("R").

ACTION: If errors are large, call lab for explanation /

	12.4	the repo	re any transcription / calculation errors in orting of average response factors (RRF) or	YES	NO ,	N/A	
			(Check at least two values but if errors are theck more.)		ركا	******	
		ACTION:	Circle errors in red.				
		ACTION:	If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".				
0	GC/M	<u>S Continu</u>	ning Calibration (Form VII)				
	13.1		Continuing Calibration Forms (Form VII) present plete for the volatile fraction?				
	13.2		entinuing calibration standard been analyzed by twelve hours of sample analysis per ent?	ركا		 	
		ACTION:	List below all sample analyses that were not within twelve hours of the previous continuing calibration analysis.				
		,					
		ACTION:	If any forms are missing or no continuing calibration standard has been analyzed within twelve hours of every sample analysis, call lab for explanation / resubmittal. If continuing calibration data are not available, flag all associated sample data as unusable ("R").				
	13.3	Do any c a RRF <	continuing calibration standard compounds have 0.05?				
	A	CTION: (Circle all outliers in red.				
		ACTION:	If any volatile compound has a RRF < 0.05, flag positive results for that compound as estimated ("J"), and flag non-detects for that compound as unusable ("R").				
	13.4		compounds have a % difference between initial and mg calibration RRF > 25%?	1			
		ACTION:	Circle all outliers in red and qualify associated				

3.

			, , , , , , , , , , , , , , , , , , , ,	* DIFFERENCE			YES	NO	N/A
		2	5-50	50-90	> 9 0	İ			
				'J' positive results, 'W' non detects	'J' positive results, "R" non detects				
	13.5	reporting (%D) bet	g of averag ween initia	e response fac l and continui	culation errors tors (RRF) or di ng RRFs? (Check e found, check m	fference at			
		ACTION:	Circle erro	ors in red.					
		ACTION:	resubmitta		l lab for explan cessary correcti usions".				
14.0	<u>Inte</u>	rnal Stan	dards (Form	VIII)					
	14.1	sample a	nd blank wit		Form VIII) of ev and lower limit				
		ACTION:	List all t	ne outliers be	low.				
	••	Sample #	Interna	al Std Are	a Lower Limi	t Upp	er Limit		
~,			-	· · · · · · · · · · · · · · · · · · ·					
							·		

			(Attac	th additional	sheets if necess	ary.)			
		ACTION:	lower limit detects (U If extreme	t, flag with " values) quant ly low area co	area count is of J" all positive itated with this unts are reported	results a internal d, or if	nd non- standar performa	d. nce	
				major abrupt umusable ("R"	drop off, flag a).	ll associ	ated non		
	14.2				ternal standards bration standard				
		ACTION:		e retention ti	hould be used to mes differ by mo				

5.0 <u>Field Duplicates</u>	YES	NO	N/A
15.1 Were any field duplicates submitted for VOA analysis?	[]	$\sqrt{}$	

ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.

ACTION: Any gross variation between field duplicate results must be addressed in the reviewer

narrative. However, if large differences exist,

identification of field duplicates should be

confirmed by contacting the sampler.

	Revision	6		
	YES	NO	N/A	_
If analyses were done more than 14 days either on the first analysis or upon reamust use professional judgement to deter of the data and the effects of additional sample results. The reviewer may determine data are unusable ("R").	malysis, the reviewed mine the reliability al storage on the	er		
Recovery (Form II)				

0	Surrogate	Recovery	(Form II)

3.1			ENA Surrogate Recovery Summaries (Form II) present of the following matrices:			
	a.	Low	Water			
	b.	Med	Water	[]	*******	<u>·/</u>
	c.	Low	Soil			\leq
	đ.	Med	Soil	[]		<u>~</u>
3.2			the BNA samples listed on the appropriate Surrogate Summaries for each of the following matrices:			
	a.	Low	Water			
	b.	Med	Water			
,	c.	Low	Soil	[]		$\underline{\checkmark}$
	đ.	Med	Soil	[]		<u></u>
	ACTI	ON:	Call lab for explanation / resubmittals. If missing deliverables are unavailable, document effect on data under "Conclusions" section of reviewer narrative.			
3.3	Were	e out	liers marked correctly with an asterisk?	اكدا		
	ACII	ON:	Circle all outliers in red.			
3.4			o or more base-neutral <u>OR</u> acid surrogate recoveries pecification for any sample or method blank?			
	If y	es,	were samples reanalyzed?			
	Were	met	hod blanks reanalyzed?	[]		<u> </u>
	ACTION: If all ENA surrogate recoveries are > 10% but within the base-neutral or acid fraction do nameet SOW specifications, for the affected fracenly (i.e. base-neutral OR acid compounds):					
			 Flag all positive results as estimated ("J"). Flag all non-detects as estimated detection limits ("UJ"). 			

STANDARD OPERATING PROCEDURE

Page: 18 of Date: March 1989

36

Revision 6

	If any base-neutral <u>or</u> acid surrogate has a recovery of <10%: 1. Flag all positive results for that fraction (i.e. all acid <u>or</u> base-neutral compounds) "J". 2. Flag all non-detects for that fraction "R".	YES	NO	N/A
	Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. Check the internal standard areas.			
	re any transcription/calculation errors between raw I Form II?		<u>[\sqrt{1}</u>	
ACTION:	If large errors exist, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
.0 Matrix Spike	s (Form III)			
4.1 Is the M	hatrix Spike Duplicate/Recovery Form (Form III)	1/1		
	rix spikes analyzed at the required frequency of the following matrices:			
a. Low	Water	$\lfloor \sqrt{1} \rfloor$		
b. Med	Water	[]		<u> </u>
c. Low	Soil	[]		<u>/</u>
d. Med	Soil	[]		<u>'/</u>
ACTION:	If any matrix spike data are missing, take the action specified in 3.2 above.			
4.3 How many	HNA spike recoveries are outside QC limits?			
	Water Soils			
· · · -	out of 22 out of 22			
	RPD's for matrix spike and matrix spike be recoveries are outside QC limits?		•	
	Water Soils			
	2_ out of 11 out of 11			
ACTION:	If MS and MSD both have less than 10% recovery for an analyte, negative results for that analyte should be rejected, and positive results should be flagged "J". The above applies only to the sample used for MS/MSD analysis. Use professional judgement in applying this criterion to other samples	NLI	0 01 1	.173

Page: 19 of 36 Date: March 1989

Revision 6

		YES	NO	N/A
6.0 Blanks (Form IV)		,		
5.1 Is the Method Blank Summary (Form IV) pr	esent?	<u>[\sqrt{1}</u>		***********
5.2 Frequency of Analysis: for the analysis TCL compounds, has a reagent/method blar analyzed for each set of samples or ever of similar matrix (low water, med water medium soil), whichever is more frequent	nk been Ty 20 samples Llow soil,	<u>[\sqrt{1}</u>		
5.3 Chromatography: review the blank raw da (RICs), quant reports or data system pr				
Is the chromatographic performance (base for each instrument acceptable for VCAs:		[1]	-	
ACTION: Use professional judgement to on the data.	letermine the			
.0 Contamination				
NOTE: "Water blanks" and "distilled water l validated like any other sample and a to qualify data. Do not confuse the other QC blanks discussed below.	are <u>not</u> used			
6.1 Do any method/instrument/reagent blanks results (TCL and/or TIC) for BNAs? When described below, the contaminant concent these blanks are multiplied by the samp Factor.	napplied as cration in	<u>~</u>	[]	distance on
6.2 Do any field/rinse blanks have positive (TCL and/or TIC)?	ENA results	**********	[]	\checkmark
ACTION: Prepare a list of the samples a with each of the contaminated (Attach a separate sheet.)				
NOTE: Only field/rinse blanks taken the as the samples are used to qualified because of in another blank. Blanks may be surrogate, spectral, tuning or caproblems.	fy data. Blanks contamination qualified for			

											
	ACTION:	TCL	results du	e to conf	in the table belo tamination. Use ociated blanks.			YES		NO	N/A
		-	Sample cor but < 10x	nc > CRQL blank	Sample conc < CF is < 10x blank v						ie
1	Common Phthalate Esters			r; cross	Reject sample re and report CRQL; cross out 'B' fl	; :	No qual: is need		ion		
•			Sample cor but < 5x		Sample conc < CF is < 5x blank va						
	Other Contamina	nts		; cross	Reject sample re and report CRQL; cross out 'B' fl	;	No qual is need		ion		-
	ACTION:	les	s than five	e times ti	the concentration he concentration lank, flag the sa	in th	e most	con-			
6.3	Are there sample?	e fic	eld/rinse/e	equipment	blanks associate	ed wit	h every	[]	<u>'</u>	_	
	ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.										
GC/1	MS Tuning	and	Mass Calib	oration (Form V)						
7.1	Are the opresent	GC/M for 1	S Tuning ar Decafluorot	nd Mass C riphenyl	alibration Forms phosphine (DFTPP)	(Form	v)	·(<u>/</u> 1	, -		
7.2		stin			trum and mass/ch vided for each t			<u>[\sqrt{1}</u>	<u>/</u>		
7.3					nd been analyzed per instrument?		very		_		
	ACTION:		any tuning cified in 3		missing, take a	ction					
	ACTION:	ana		which no	ument ID, and sa associated GC/MS		à				

7.0

Date: March 1989

NLI 001 1176

Revision 6

							YES	NO	N/A
			DATE	TIME	INSTRUMENT	SAMPLE NUMBERS	3		
	••			i i 					
		ACII	gen		provide missing data ide an acceptable tv				
	7.4		the ion rument u		criteria been met fo	or each	[\sqrt{1}]		
		ACIT			which do not meet id ch a separate sheet				
		ACTI	ass How (Se rev	ociated sam ever, if ex e 1988 Func	bration is in error ple data as unusable panded ion criteria tional Guidelines), ccept data with app	e ("R"). are met the data			
	7.5	mass	lists a		tion / calculation (Check at least to eck more.)		•	[<u>√</u>]	
	7.6	been	reporte		mber of significant at least two values lues.)		<u>/</u>	[<u>_</u>]	
		ACTI	res	ubmittal, m	s exist, call lab for ake necessary corrections.				
	7.7		the spec ptable?	tra of the	mass calibration co	mpound	[<u>/</u>]		
		ACII	whe	ther associ	al judgement to dete ated data should be ified, or rejected.				
8.0	Tar	get C	ampound	List (TCL)	Analytes				
	8.1	pres	ent with		s Data Sheets (Form eader information o ollowing:				
		a. S	amples a	nd/or fract	ions as appropriate		(人)		
		b. M	atrix sp	ikes and ma	trix spike đuplicat	es			
		c. B	lanks	•					

8.2	mass spe data sys	ENA Reconstructed Ion Chromatograms, the ctra for the identified compounds, and the tem printouts (Quant Reports) included in le package for each of the following?	IES	NO	N/A
	_	es and/or fractions as appropriate		-	
		x spikes and matrix spike duplicates spectra not required)	ك	_	
	c. Blank	S			
	ACTION:	If any data are missing, take action specified in 3.2 above.			
8.3	Are the	response factors shown in the Quant Report?	[]	_	
8.4	Is chrom	atographic performance acceptable with			
	respece	Baseline stability			
		Resolution	ز		
		Peak shape	ι <u>V</u> j		-
		Full-scale graph (attenuation)			
		Other:	[]		
	ACTION:	Use professional judgement to determine the acceptability of the data.			
8.5		lab-generated standard mass spectra of the ed ENA compounds present for each sample?			
	ACTION:	If any mass spectra are missing, take action specified in 3.2 above. If Iab does not generate their own standard spectra, make note in "Contract Problems/Non-compliance".			
8.6		RT of each reported compound within 0.06 RRT the standard RRT in the continuing calibration?			
8.7	relative	ions present in the standard mass spectrum at a intensity greater than 10% also present in the ass spectrum?			-
8.8	Do sample within 20	e and standard relative ion intensities agree 0%?	$ \swarrow $		
	ACTION:	Use professional judgement to determine acceptability of data. If it is determined that incorrect identifications were made, all such data should be rejected, flagged "N" (presumptive evidence of the presence of the compound) or changed to not detected (at the calculated detection limit).			

				YES	NO	N/A
^.0	Ten	tatively	Identified Compounds (TIC)			
	9.1	Part B)	Tentatively Identified Compound Forms (Form I, present; and do listed TICs include scan number tion time, estimated concentration and "J" r?	لک	******	
	9.2	compound	mass spectra for the tentatively identified s and associated "best match" spectra included ample package for each of the following:			
		a. Sample	es and/or fractions as appropriate			
		b. Blank	s	$(\underline{\checkmark})$		
		ACTION:	If any TIC data are missing, take action specified in 3.2 above.			
		ACTION:	Add "J" qualifier if missing and "N" qualifier to all <u>identified</u> TIC compounds on Form I, Part B.			
·	9.3	TIC compo	TCL compounds (from any fraction) listed as ounds (example: 1,2-dimethylbenzene is xylene	-		-
		ACTION:	Flag with "R" any TCL compound listed as a TIC.			
` `.	9.4	relative	ions present in the reference mass spectrum with a intensity greater than 10% also present in the ass spectrum?			-
	9.5		nd "best match" standard relative ion intensities thin 20%?			
		ACTION:	Use professional judgement to determine acceptability of TIC identifications. If it is determined that an incorrect identification was made, change identification to "unknown" or to some less specific identification (example: "C3 substituted benzene") as appropriate.			
0.0	Con	pound Out	antitation and Reported Detection Limits			
	10.	Form I Verify ion, an	results? Check at least two positive values. that the correct internal standard, quantitation of RRF were used to calculate Form I result. The correct of the contract of the contract of the correct of the contract of the			
	10.		e CRQLs adjusted to reflect sample dilutions or soils, sample moisture?			

YES

			YES	NO	N/A
	ACTION:	If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
	ACTION:	When a sample is analyzed at more than one dilution, the lowest CRQIs are used (unless a QC exceedance dictates the use of the higher CRQL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.			
.0 Stand	dards Dat	a (GC/MS)			
11.1	system p	Reconstructed Ion Chromatograms, and data printouts (Quant. Reports) present for initial inuing calibration?			
. 	ACTION:	If any calibration standard data are missing, take action specified in 3.2 above.			
0 <u>GC-/MS</u>	S Initial	Calibration (Form VI)			
19.1		Initial Calibration Forms (Form VI) present lete for the ENA fraction?			
	ACTION:	If any calibration standard forms are missing, take action specified in 3.2 above.			
12.2	•	onse factors stable for BNAs over the ation range of the calibration (RSD <30%)?			
	ACTION:	Circle all outliers in red.			
	ACTION:	When RSD >30%, non-detects may be qualified using professional judgement. Flag all positive results "J". When RSD >90%, flag all non-detects as unusable ("R"). (Region II policy.)		/	
12.3	Do any o	compounds have a RRF < 0.05?			
	ACTION:	Circle all outliers in red.			
	ACTION:	If any BNA compound has an average RRF < 0.05, flag positive results for that compound as estimated ("J"), and flag non-detects for that compound as unusable ("R").			

	12.4	Are ther	e any transcription / calculation errors in	144	140	N/A
		the repo	orting of average response factors (RRF) or Check at least two values but if errors are heck more.)			
		ACTION:	Circle errors in red.			
		ACTION:	If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
73.0	GC/M	S Continu	ing Calibration (Form VII)			
	13.1		Continuing Calibration Forms (Form VII) present lete for the BNA fraction?		************	
	13.2	Has a co for ever instrume	ntinuing calibration standard been analyzed y twelve hours of sample analysis per nt?			
		ACTION:	List below all sample analyses that were not within twelve hours of the previous continuing calibration analysis.			
		ACTION:	If any forms are missing or no continuing calibration standard has been analyzed within twelve hours of every sample analysis, call lab for explanation / resubmittal. If continuing calibration data are not available, flag all			
			associated sample data as unusable ("R").			
	13.3	Do any c a RRF <	ontinuing calibration standard compounds have 0.05?	-	W	
	A	CTION: (Circle all outliers in red.			
		ACTION:	If any BNA compound has a RRF < 0.05, flag positive results for that compound as estimated ("J"), and flag non-detects for that compound as unusable ("R").			
	13.4		ompounds have a % difference between initial and ng calibration RRF > 25%?	<u>/</u>		
		ACTION:	Circle all outliers in red and qualify associated sample data as outlined in the table below:			

YES

N/A

\$ DIFFERENCE 25-50 50-90 >90 'J' positive 'J' positive 'J' positive results, no action results, 'W' results, "R" for non detects non detects non detects 13.5 Are there any transcription / calculation errors in the reporting of average response factors (RRF) or difference (%D) between initial and continuing RRFs? (Check at least two values but if errors are found, check more.) ACTION: Circle errors in red. ACTION: If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions". 14.0 Internal Standards (Form VIII) 14.1 Are the internal standard areas (Form VIII) of every sample and blank within the upper and lower limits for each continuing calibration? ACTION: List all the outliers below. Internal Std Area Lower Limit Upper Limit Sample # (Attach additional sheets if necessary.) ACTION: If the internal standard area count is outside the upper or lower limit, flag with "J" all positive results and nondetects (U values) quantitated with this internal standard. If extremely low area counts are reported, or if performance exhibits a major abrupt drop off, flag all associated nondetects as unusable ("R"). 14.2 Are the retention times of the internal standards within 30 seconds of the associated calibration standard? ACTION: Professional judgement should be used to qualify data if the retention times differ by more than 30 seconds.

Revision	. 6		
YES	NO	N/A	

15.0 Field Duplicates

15.1 Were any field duplicates submitted for BNA analysis?

ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the reviewer narrative. However, if large differences exist, identification of field duplicates should be

confirmed by contacting the sampler.

	REVISION	. 6	
PART C: PESTICIDE/PCB ANALYSES	YES	NO	N/A
) Traffic Reports and Laboratory Narrative			
1.1 Are the Traffic Report Forms present for all samples?	W		
ACTION: If no, contact lab for replacement of missing or illegible copies.			
1.2 Do the Traffic Reports or Lab Narrative indicate any problems with sample receipt, condition of samples, analytical problems or special notations affecting the quality of the data?	<u>/</u>	<u></u> ;	
ACTION: Use professional judgement to evaluate the effect on the quality of the data.			
ACTION: If any sample analyzed as a soil contains more than 50% water, all data should be rejected.			
.0 <u>Holding Times</u>			
2.1 Have any PEST/PCB holding times, determined from date of collection to date of extraction, been exceeded?			
Samples for PEST/PCB analysis, both soils and waters, must be extracted within seven days of the date of collection. Extracts must be analyzed within 40 days of the date of extraction.			
.0 Surrogate Recovery (Form II)			
3.1 Are the PEST/PCB Surrogate Recovery Summaries (Form II) present for each of the following matrices:			
a. Low Water	أكلا		
b. Med Water	[]		<u> </u>
c. Low Soil			<u> </u>
d. Med Soil	<u></u>	_	<u> </u>
3.2 Are all the PEST/PCB samples listed on the appropriate Surrogate Recovery Summaries for each of the following matrices:			
a. Low Water			
b. Med Water	[]		<u> </u>
c. Low Soil	[]		/
d. Med Soil	ſ 1		

out of 12

6 out of 12

				Revision	6	•
		y RPD's for matrix spike te recoveries are outsid		YES	NO	N/A
٠		Water	Soils			
	-	Out of 6	out of 6			
	ACTION:	If MS and MSD both have for an analyte, negation analyte should be rejected in the second second in the second second in the second second in the second second second in the second sec	ected, and positive ged "J". The above unple used for MS/MSD sional judgement in			
5.0	Blanks (Form	n_IV)		,		
	5.1 Is the M	Method Blank Summary (Fo	orm IV) present?			
	TCL companalyzed of simil	cy of Analysis: for the counds, has a reagent/me d for each set of sample lar matrix (low water, m soil), whichever is more	ethod blank been as or every 20 samples ned water, low soil,	<u>[\sqrt{1}</u>	_	
		ography: review the bla ograms, quant reports or	nk raw data - data system printouts.			
 -		chromatographic performa n instrument acceptable	nce (baseline stability) for PEST/PCBs?			
	ACTION:	Use professional judge effect on the data.	ment to determine the			
5.0	Contaminatio	20.				
	valid to qu	er blanks" and "distille dated like any other sam valify data. Do not com C QC blanks discussed be	ple and are <u>not</u> used used use them with the			
	results below, t	method/instrument/reager for PEST/PCBs? When ar the contaminant concentr ciplied by the sample Di	plied as described ation in these blanks	_	(<u>/</u> 1	,
	6.2 Do any fresults?	field/rinse blanks have	positive PEST/PCB		(<u>/</u>	<u>./</u>
	action:	Prepare a list of the with each of the conta (Attach a separate she	minated blanks.			

Page: 30 of 36 Date: March 1989

YES

NO

N/A

NOTE: Only field/rinse blanks taken the same day as the samples are used to qualify data. Blanks may not be qualified because of contamination in another blank. Blanks may be qualified for surrogate, spectral, tuning or calibration QC problems.

ACTION: Follow the directions in the table below to qualify TCL results due to contamination. Use the largest value from all the associated blanks.

Sample conc > CRQL but < 5x blank	Sample conc < CRQL & is < 5x blank value	Sample conc > CRQL & > 5x blank value
with a "U"; cross	Reject sample result and report CRQL; cross out "B" flag	No qualification is needed

6.3 Are there	field/rinse/equipment l	blanks associated with e	very		
sample?			[]	\checkmark	

ACTION: For low level samples, note in data assessment that there is no associated field/rinse/equipment blank. Exception: samples taken from a drinking water tap do not have associated field blanks.

7.0 Calibration and GC Performance

7.1 Are the following Gas Chromatograms and Data System Printouts for both Primary and Confirmation (confirmation standards not required if there are no positive results above CRQL) column present:

ACTION: If no, take action specified in 3.2 above

a.	Evaluation Standard Mix A	(<u>/</u>)	
b.	Evaluation Standard Mix B		
c.	Evaluation Standard Mix C	<u>[_1</u>	
đ.	Individual Standard Mix A		
e.	Individual Standard Mix B		
f.	Multi-component Pesticides Toxaphene & Chlordane	[<u>/</u>]	
g.	Aroclors 1016/1260		
h.	Aroclors 1221, 1232, 1242, 1248, and 1254		

Date: March 1989 Revision 6 YES NO N/A 7.2 Is Form VIII Pest-1 present and complete for each GC column (primary and confirmation) and each 72 hour sequence of analyses? ACTION: If no, take action specified in 3.2 above. 7.3 Are there any transcription/calculation errors between raw data and Form VIII? If large errors exist, call lab for explanation / ACTION: resubmittal, make any necessary corrections and note errors under "Conclusions". 7.4 Has the total breakdown on quantitation or confirmation column exceeded 20% for DDT? - for Endrin? or if Endrin aldehyde and 4,4'-DDD co-elute and there is a peak at their retention time, has the combined DDT and Endrin breakdown exceeded 20%? ACTION: a. If DDT breakdown is greater than 20% on quantitation column beginning with the samples following the last in control standard: 1. Flag all positive DDT results "J". 2. If DDT was not detected but DDD and/or DDE are positive, flag the DDT non-detect "R". 3. Flag positive DDD and DDE results "JN". 4. If DDT breakdown is > 20% on confirmation column and DDT is identified on quantitation column but not on confirmation column, use professional judgement to determine whether DDT should be reported on Form I (if reported, flag result "N"). b. If Endrin breakdown is > 20% on quantitation column, beginning with the samples following the last in control standard: 1. Flag all positive Endrin results "J". 2. If Endrin was not detected, but Endrin Aldehyde and/or Endrin Ketone are positive, flag the Endrin non-detect "R". 3. Flag Endrin Ketone positive results "JN". 4. If Endrin breakdown is > 20% on confirmation column and

- 4. If Endrin breakdown is > 20% on confirmation column and Endrin is identified on quantitation column but not on confirmation column, use professional judgement to determine whether Endrin should be reported on Form I (if reported, flag result "N").
- c. If the combined breakdown is used (it can only be used if the conditions in 7.4 above are met) and is > 20% on quantitation column beginning with the last in control standard, take the actions specified in 7.4 a and b above. If the combined breakdown is >20% on confirmation column and Endrin or DDT is identified on quantitation column but not on confirmation column, use professional judgement to determine whether Endrin or DDT should be reported on Form I (if reported, flag result "N").

	Date: M Revision		989
	YES		N/A
7.5 Is the linearity check RSD of all four calibration factor <10% for the quantitation column?	rs ()	<u>/</u>	
ACTION: If no, flag positive hits for all pesticide and F analytes "J" for all associated samples. Do not toxaphene or DDT if they are quantified from a 3- calibration curve.	flag		
7.6 Is the % difference between the EVAL A and each analysis (quantitation and confirmation) DBC retention time within QC limits (2% for packed column, 0.3% for capillary [I.D. < 0.32 mm], 1% for megabore [0.32 < I.D. < 2 mm]) ?	1 .	· —	
ACTION: DBC retention time cannot be evaluated if DBC is not detected. If it is present and has a retention time out of QC limits, then use professional judgement to determine the reliability of the analysis and flag results "R", if appropriate.	<u>,</u>		
7.7 Was the proper analytical sequence followed for each 72 hour period of analyses (page PEST D-36 in 8/87 SOW).	لکنا		
ACTION: If no, use professional judgement to determine the severity of the effect on the data and accept or reject it accordingly. Generally, the effect is negligible unless the sequence was grossly altered or the calibration was also out of limits.			
Pesticide/PCB Standards Summary			
8.1 Is Form IX present and complete for each GC column and 72 hr sequence of analyses?		-	
ACTION: If no, take action specified in 3.2 above.			
8.2 Are there any transcription/calculation errors between raw data and Form IX?			
ACTION: If large errors exist, call lab for explanation resubmittal, make any necessary corrections and note errors under "Conclusions".	/		
8.3 Is DDN retention time for packed columns > 12 min (except OV-1 and OV-101 columns)?	لک	<u> </u>	
ACTION: If no, check that there is adequate resolution between individual components. If not, flag results for compounds that interfere with each other (co-elute) "R".			
4 Do all standard retention times fall within the windows established for the first IND A and IND B analyses?	<u>(\sqrt{1}</u>		

Date: March 1989 Revision 6

		112	140	אענו
ACTION:	Beginning with the samples following the last <u>in control</u> standard, check to see if the chromatograms contain peaks within an expanded window surrounding the expected retention times. If no peaks are found and, DBC is visible non-detects are valid. If peaks are present and cannot be identified through "pattern recognition" or a consistent shift in standard retention times, flag all affected compound results "R".			
factors 20% (for	continuing calibration standard calibration within 15% (for quantitation column) or confirmation column) of the initial (at mg of 72 hr sequence) calibration factors?		<u> </u>	
ACTION:	If no, flag all associated positive results "J". Use professional judgement to determine whether or not to flag non-detects.			
Pesticide/PC	B Identification			
	X complete for every sample in which a me or PCB was detected?	[]		1
ACTION:	If no, take action specified in 3.2 above.	•		
	re any transcription errors between raw		[]	<u> </u>
ACTION:	If large errors exist, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
calculat	ention times of sample compounds within the sed retention time windows for both quantitation simulation analyses? - All nondefected	[]		<u>/</u>
	S confirmation provided when required (when concentration is > 10 ug/ml in final extract)?	[]		1
ACTION:	Reject ("R") all positive results (meeting quantitation column criteria, but missing confirmation by a second column or GC/MS (if appropriate). Also, reject ("R") all positive results not meeting retention time window criteria unless associated standard compounds are similarly biased (i.e. base on RRT to DBC).			
the mult	romatograms for false negatives, especially for ciple peak components toxaphene and PCB's. Were y false negatives?			
ACTION:	If appropriate PCB standards were not analyzed, or if the lab performed no confirmation analysis, flag the appropriate data with an "R".			

Date: March 1989

Revision 6

.0.0	Comp	ound Qua	ntitation and Reported Detection Limits	YES	NO	N/A
	10.1	Form I	re any transcription / calculation errors in results? Check at least two positive values. y errors found?			
			Simple peak pesticide results can be checked for rough agreement between quantitative results obtained on the two GC columns. The reviewer should use professional judgement to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, the lower of the two values should be reported and qualified as presumptively present at an estimated quantity ("JN"). This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has obscured the attempt at a second column confirmation.			
	10.2		CRQLs adjusted to reflect sample dilutions r soils, sample moisture?			
·		ACTION:	If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
		ACTION:	When a sample is analyzed at more than one dilution, the lowest CRQLs are used (unless a QC exceedance dictates the use of the higher CRQL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" value on the original Form I and substituting it with data from the analysis of diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including any in the summary package.			
٠.0			Quality	/		
	11.1	Were ba	selines stable? *			
•	11.2		y electropositive displacement (negative or unusual peaks seen?			
	11.3		rly eluting peaks (for early eluting s) resolved to baseline?		_	
<u> </u>			For 11.1 and 11.2, comment only. For 11.3, reject ("R") those analytes that are not sufficiently resolved.	•		
		*	Poork smore was not sind-i	NL	1 001	1190

Date: March 1989

Revision 6

YES

2.0 Field Duplicates

12.1 Were any field duplicates submitted for PEST/PCB analysis?

NO

N/A

ACTION: Compare the reported results for field duplicates

and calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the reviewer narrative. However, if large differences exist,

identification of field duplicates should be

confirmed by contacting the sampler.

	12.4	Are ther	re any transcription / calculation errors in orting of average response factors (RRF) or	YES	NO	N/A
		RSD? (Check at least two values but if errors are heck more.)			
		ACTION:	Circle errors in red.			
		ACTION:	If errors are large, call lab for explanation / resubmittal, make any necessary corrections and note errors under "Conclusions".			
3.0	GC/M	S Continu	ning Calibration (Form VII)			
	13.1	Are the and comp	Continuing Calibration Forms (Form VII) present lete for the BNA fraction?	<u>[\sqrt{1}</u>		
	13.2		ntinuing calibration standard been analyzed y twelve hours of sample analysis per ent?	لكا		
	·	ACTION:	List below all sample analyses that were not within twelve hours of the previous continuing calibration analysis.			
						•
		ACTION:	If any forms are missing or no continuing calibration standard has been analyzed within twelve hours of every sample analysis, call lab for explanation / resubmittal. If continuing calibration data are not available, flag all associated sample data as unusable ("R").			
	13.3	Do any c a RRF <	ontinuing calibration standard compounds have 0.05?		رکن	
	A	CTION: (Circle all outliers in red.			
		ACTION:	If any BNA compound has a RRF < 0.05, flag positive results for that compound as estimated ("J"), and flag non-detects for that compound as unusable ("R").			
	13.4		compounds have a % difference between initial and ng calibration RRF > 25%?	<u> </u>	[]	
		ACTION:	Circle all outliers in red and qualify associated			

Revision 6

			· -				YES	NO	N/A
				* DIFFERENCE					.,
		2	25-50	50-90	>90	1			
				'J' positive results, 'W' non detects					
	13.5	reporting (%D) bet	ng of average ween initia	e response fac l and continui	culation errors ctors (RRF) or di ing RRFs? (Check re found, check m	fference at			
		ACTION:	Circle erro	ors in red.					
		ACTION:	resubmitta		l lab for explan cessary correcti usions".				
14.0	Inte	rnal Stan	dards (Form	VIII)					
	14.1	sample a	nd blank wit		(Form VIII) of ever and lower limit			_	
		ACTION:	List all t	he outliers be	elow.				
		Sample #	Intern	al Std Are	ea Lower Limi	t Upp	er Limit		
			-						
			-						
			·	·					
								_	
									
			(Atta	ch additional	sheets if necess	sary.)			
		ACTION:	lower limit detects (U If extreme exhibits a	t, flag with ' values) quand ly low area co	d area count is of "J" all positive titated with this ounts are reported drop off, flag at").	results a internal d, or if	and non- l standar performa	rd. ince	
	14.2				nternal standards ibration standard				
		ACTION:	Profession data if the 30 seconds	e retention to	should be used to imes differ by mo	qualify ore than			

YES

			- 7	-
		,		

NO

N/A

15.0 Field Duplicates

15.1 Were any field duplicates submitted for VOA analysis?

ACTION: Compare the reported results for field duplicates

and calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the reviewer narrative. However, if large differences exist,

identification of field duplicates should be

confirmed by contacting the sampler.

PAGI	E (OF

TOTAL REVIEW

CLP DATA ASSESSMENT

Functional	Guidelines fo	r Evaluating Orga	nics Analysis
Case No	SDG No	LABORATORY	SITE
DATA ASSESSMENT			
The current data have been		delines (1988) 101	r evaluating organic
have been quali (unusable), or "	fied with a "J' 'JN" (presumpti estimated val	" (estimated), "U" ve evidence for t	hose analytes which (non-detects), "R" the presence of the is detailed on the
flag means that due to significano information values should relied upon, ex mind is that no QC tests, is o	the associated ant QC problems as to whether not appear on ven as a last compound concurred to	d value is unusable the analysis is in the compound is pure data tables becaresort. The second interestion, even in the accurate.	rs. First, the "R" le. In other words, invalid and provides resent or not. "R" luse they cannot be ond fact to keep in f it has passed all trict QC serves to otentially contains
		Date:	
Verified By:		Date:	//19

__OF__

DATA ASSESSMENT:

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The following action was taken in the samples and analytes shown due to excessive holding time.

DATA ASSESSMENT

2. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip field, rinse and water blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than 5 times the blank contaminant level (10 times for the common contaminants), the analytes are qualified as non- detects, "U". The following analytes in the samples shown were qualified with "U" for these reasons:

A) Method blank contamination

1. VOA and size = 9175 - Report Scale of 1000.

I 9177 1800.

2 RIDA. IDINE 1911 For DIEL IN 1000 MILLION DE IDINA 1214

Kith Rugin methodic w

B) Field or rinse blank contamination ("water blanks" or "distilled water blanks" are validated like any other sample)

No field clara collected or analyzed

for organic analysis

C) Trip blank contamination - VOA analysis

Acetone at 2002 no company

DATA ASSESSMENT:

3. MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is bromofluorobenzene (BFB) and for semi-volatiles is decafluorotriphenyl- phosphine (DFTPP).

If the mass calibration is in error, all associated data will be classified as unusable, "R".

DATA ASSESSMENT:

4. CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) RESPONSE FACTOR:

The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be ≥ 0.05 in both the initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected ("R").

PAGE__OF__

DATA ASSESSMENT:

5. CALIBRATION:

A) PERCENT RELATIVE STANDARD DEVIATION (%RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ" (if %D or RSD >50%). If there is a gross deviation of %RSD and %D, the non-detects may be rejected ("R").

For the PCB/PESTICIDE fraction, %RSD for aldrin, endrin, DDT, and dibutylchlorendate must not exceed 10%. Percent D must be within 15% on the quantitation column and 20% on the confirmation column.

CONA - %D : Rentroic Acid 27%

di-n-octylphthodote 29% all their

2.4- dini tropherol 28°3/20 proside

in somples.

[OA - %D : Chloroethone 42% - no action

Methylere Chloride 29% - Appeximate

methylere chloride for sample Igns and Ignor

[Necticide RSD: 4,4'-DDT Excelled collection of nondetected in some

%D: Endrin exceeded critéria-

noaction, nordetected in scincies

PAGE__OF__

DATA ASSESSMENT:

6. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below.

ENA- 2 Acid surrogents failed and the temperature and IPITT when for acid extractable of the interval for nondetected comple receives received to the above sometimes.

PAGE_OF_

DATA ASSESSMENT:

7. INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction.

PAGE_OF_

DATA ASSESSMENT:

8. COMPOUND IDENTIFICATION:

A) VOLATILE AND SEMI-VOLATILE FRACTIONS:

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

B) PESTICIDE FRACTION:

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10 ng/ml in the final sample extract.

PAGE_OF_

DATA ASSESSMENT:

9. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for some additional qualification of the data.

PRIA- LOW spike recovered to the resolution of the chief - 3methyl phenol in sample Equal.

The detection limits for these in the continuous for the form

-			
		ACHMENT 1 PAGE_OF NO. HW-6	<u>-</u>
المست			
	DATA	A ASSESSMENT:	
	10.	OTHER QC DATA OUT OF SPECIFICATION:	
••			
•			
÷			
•			
~			
•			
•	11.	SYSTEM PERFORMANCE AND OVERALL ASSESSMENT (continued on	next
•		page if necessary):	
†			
<u>•</u>			
~		,	
· —			
-	12.	CONTRACT PROBLEMSNON-COMPLIANCE:	
		•	
-			
•			
•			
	13.	This package contains re-extraction, re-analysis or dilution. Upon reviewing the QA results, the following	form
•		I(s) are identified to be used.	
•		!	
· · · · · · · · · · · · · · · · · · ·			
•			
A			
-	•		
~			

ATTACHMENT 1 PAGE_OF_ SOP NO. HW-6 DATA ASSESSMENT: SYSTEM PERFORMANCE AND OVERALL ASSESSMENT (continued): 11.

- * If any blank values are above the IDL, Action levels which are 5x the highest concentration of that element's contamination in any blank are calculated. Specific Actions
 - 1. When the concentration is greater than the IDL, but less than the Action level, report the sample concentration detected with a "U."
 - 2. When the sample concentration is greater than the Action level, report the sample concentration unqualified.

ML Indich RECEIVED

FEB 21 1989

O'BRIEN & GERE SYRACUSE, N. Y.

SOP NO. HW-2

Evaluation of Metals Data for the Contract Laboratory Program (CLP)

based on

SOW. 7/87 REV.12/87

(SOP Revision VIII)

DATE: 2-14-89 PREPARED BY: Toxic and Hazardous Waste Section CONCURRED BY: Louis Bevilacqua, Section Chief Toxic and Hazardous Waste Section APPROVED BY: Gerard F. McKenna, Chief Monitoring Management Branch

JErdy Chilec Oct 1989

RECEIVED

FEB 21 1989

O'BRIEN & GERE SYRACUSE, N. Y.

SOP NO. HW-2

Evaluation of Metals Data for the Contract Laboratory Program (CLP)

based on

SOW. 7/87 REV.12/87

Revision VIII) (SOP

PREPARED BY:

Hanif Sheikh, Quality Assurance Chemist Toxic and Hazardous Waste Section

CONCURRED BY:

Louis Bevilacqua, Section Chief Toxic and Hazardous Waste Section

DATE: 2-14

APPROVED BY:

Gerard F. McKenna, Chief

Monitoring Management Branch

NLI 001 1209

Page 1 of 30

Title: Evaluation of Metals Data for the

Contract Laboratry Program

Date: Dec. 1988 Number: HW-2

Revision: 8

1.0 Scope

- 1.1 This procedure is applicable to inorganic data obtained from contractor laboratories working for Hazardous Waste Site Contract Laboratory Program (CLP).
- 1.2 The data validation is based upon analytical and quality assurance requirements specified in Statement of Work (SOW) 7/87.
- 2.0 Responsibilities Data reviewers will complete the following tasks as assigned by the Data Review Coordinator:
 - 2.1. For a total review:
 - 2.1.1 Data Assessment "Total Review-Inorganics" Checklist Appendix (A.1).
 The reviewer must answer every question on the checklist.
 - 2.1.2 Data Assessment Data Assessment Narrative (Appendix A.2)

 The answer on the checklist must match the action in the narrative (appendix A.2) and on Form I's.
 - 2.1.3 Contract Non-Compliance SMO Report (Appendix A.3)

 This report is to be completed only when a serious contract violation is encountered, or upon the request of the Data Review Manager or Deputy Project Officer (DPO). Forward 5 copies: one each for internal files, appropriate Regional DPO, Sample Management Office (SMO) and last two addresses of Mailing List for Data Reviewers (Appendix A.4). In other cases, all contract violations should be appended to end of Data Assessment Narrative (Sec. A.2.2)
 - 2.1.4 Data Summary Sheet Summary of Inorganic Quality Control Data (Appendix A.5).

 Enter on Data Summary Sheet all values from Forms I through IX. Circle all values out of control limits in red.
 - 2.1.5 CLP Data Assessment Summary Forms
 - 2.1.5.1 Appendix A.6

 Fill in the total number of analytes analyzed by different analyses and the number of analytes rejected or flagged as estimated due to corresponding quality control criteria. Place an "X" in boxes where analyses were not performed, or criteria do not apply.
 - 2.1.5.2 Appendix A.7

 Data reviewer is also required to fill out Inorganic Regional Data Assessment form (Appendix A.7) provided by EPA Headquarters. Codes listed on the form will be used to describe the Data Assessment Summary.

Page 2 of 30

. Title: Evaluation of Metals Data for the

Contract Laboratory Program

Date: Dec. 1988 Number: HW-2

Revision: 8

2.1.6 Data Review Log: Each data reviewer will maintain a log of reviews completed

to include: a. date of start of case review

b. date of completion of case review

c. site

d. case number

e. contract laboratory

f. number of samples

g. matrix

h. hours worked

i. reviewer's initials

The log is kept in MMB office.

2.1.7 Telephone Record Log - the data reviewer should enter the bare facts of inquiry, before initiating any phone conversation with CLP laboratory. After the case review has been completed, mail white copy of Telephone Record Log to the laboratory and pink copy to SMO. File yellow copy in the Telephone Record Log folder, and attach a xerox copy of the Telephone Record Log to the completed Data Assessment Narrative (Appendix A.2).

2.1.8 Forwarded Paperwork

- 2.1.8.1 Upon completion of review, the following are to be fowarded to the Regional Sample Control Center (RSCC) located in the Surveillance and Monitoring Branch:
 - a. data package
 - b. completed data assessment checklist (Appendix A.1, original)
 - c. SMO Contract Compliance Screening (CCS)
 - d. Data Summary Sheet (Appendix A.5) along with completed Data Assessment Narrative (Appendix A.2)
 - e. Record of Communication (copy)
 - f. CLP Reanalysis Request/Approval Record (original + 3 copies)
 - g. Appendix A.7 (original).
- 2.1.8.2 Forward 4 copies of completed Data Assessment Narrative (Appendix A.2) along with 2 copies of the Inorganic Data Assessment Form (Appendix A.7) and Telephone Record Log, if any,: one each for appropriate Regional DPO, Sample Management Office (SMO), and last two addressees of Mailing List for Data Reviewers (Appendix A.4) (the Inorganic Data Assessment form does not go to the last two addressees).
 - 1.9 <u>Filed Paperwork</u> Upon completion of review, the following are to be filed within MMB files:
 - a. completed Data Assessment Narrative (Appendix A.2)
 - b. Telephone Record Log (copy)
 - c. Data Summary Sheet Summary of Inorganics Quality Control Data (copy) (Appendix A.5)
 - d. Record of Communication (original)

Page 3 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Date: Dec. 1988 Number: HW-2Revision: 8

e. SMO Report (copy)

- f. CLP Data Assessment Summary Form (Appendix A.6 and A.7).
- g. CLP Reanalysis Request/Approval Record (copy)
- h. checklist of Total Review (Appendix A.1).

3.0 Data Completeness

Indicate incomplete data package on the computer tracking sheet. Authorized contractor personnel may contact the laboratory contact after discovery of an incomplete data package. If a laboratory will not return phone calls or does not respond to requests, notify the DPO of the Region in which the laboratory is located.

- 4.0 Rejection of Data All values determined to be unacceptable on the Inorganic Analysis Data Sheet (Form I) must be lined over with a red pencil. As soon as any review criteria causes data to be rejected, that data can be eliminated from any further review or consideration.
 - .0 Acceptance Criteria In order that reviews be consistent among reviewers, acceptance criteria as stated in Appendix A.1 should be used. Additional guidance can be found in the National Inorganic Functional Guidelines.
- 6.0 SMO Contract Compliance Screening (CCS) This is intended to aid reviewer in locating any problems, both corrected and uncorrected. However, the validation should be carried out even if CCS is not present. Resubmittals received from laboratory in response to CCS must be used by the reviewer.
- 7.0 Request for Reanalysis Data reviewers must note all items of contract noncompliance within Data Assessment Narrative. If holding times and sample storage times have not been exceeded, DPO may request reanalysis if items of non-compliance are critical to data assessment. Requests are to be made on "CLP Re-Analysis Request/Approval Record".
- 8.0 Record of Communication Provided by the Regional Sample Control Center (RSCC) to indicate which data packages have been received and are ready to be reviewed.

• •	STANDARD OPERATING PROCEDURE	Page	4	of	30
Title:	Contract Laboratory Program	Date: Numbe Revis:	r:	HW-	
		YES		NO	<u>N/4</u>
A.1.1	Contract Compliance Screening Report (CCS) - Present?				$\underline{\checkmark}$
A.1.2	Record of Communication (from RSCC) - Present?	[]			$\underline{\mathcal{L}}$
	ACTION: If no, request from RSCC.				
A.1.3	Sample Traffic Report - Present or on file?				
	Legible?	[<u>√</u>]			_
	ACTION: If no, request from Regional Sample Control Center (RSCC).				
A.1.4	Cover Page - Present?	[]			V
	Is cover page properly filled in and signed by the manager or the manager's designee?	[]		·	$\underline{\vee}$
	ACTION: If no, prepare Telephone Record Log, and contact laboratory.				
	Do numbers of samples correspond to numbers on Record of Communication?	[]			\checkmark
•	Do sample numbers on cover page agree with sample numbers on:				
	(a) Traffic Report Sheet?	[]		_	$\underline{\vee}$
	(b) Form I's?	[]			$\overline{\mathcal{V}}$
	ACTION: If no for any of the above, contact RSCC for clarification.				
A.1.5	Form I (Final Data) - Are all Form I's present and complete?	<u>[\sqrt{1}</u>	•	_	_
<u> </u>	ACTION: If no, prepare telephone record log and contact laboratory for submittal.				
•••	Are correct units (ug/l for waters and mg/kg for soils) indicated in Form I's?	[/1	,		

NLI 001 1213

Date: Dec. 1988 Title: Evaluation of Metals Data for the Number: HW-2Contract Laboratory Program Revision: 8 Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics) N/A YES NO Are sample results for each parameter corrected for percent solids on solids? Are EPA sample # s and corresponding laboratory sample ID # s the same as on the Cover Page, Form I's and in the raw data? Do any computation/transcription errors exceed 10% of reported values? Are all "less than IDL" values properly coded with "U"? ACTION: If no for any of the above, prepare Telephone Record Log, and contract laboratory for corrected data. Was a brief physical description of samples given on Form I's? Were the result qualifiers used correctly with final data? Were any samples diluted beyond requirements of contract? If yes, were dilutions noted on Form I's? If no for any of the above, note under contract problem/non-compliance of the Data Assessment Narrative". A.1.6 Holding Times - (aqueous samples) (Examine sample traffic reports and digestion/distillation logs.) Mercury (28 days). exceeded? Cyanide (14 days). exceeded? Other Metals (6 months). . . . exceeded? Soil samples Metals and Cyanide (6 months).....exceeded? NOTE: Prepare a list of all samples and analytes for which holding times have been exceeded. Specify

the number of days from date of collection to the

date of analysis (from raw data). Attach to checklist.

STANDARD OPERATING PROCEDURE

Page 5

of

Title:	Evaluation of Metals for the Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Number:	Date: Dec. 1988 Number: HW-2 Revision: 8			
		YES	NO	N		
	ACTION: If yes, reject (red-line) values less than Instrument Detection Limit (IDL); flag as estimated (J) the values above IDL.					
A.1.7	Raw Data					
A.1.7.1	Digestion Log* for flameAA/ICP present?	[<u>\scale{1}</u>]		_		
	Digestion Log for furnace AA present?	[<u>/</u>]		_		
	Digestion Log for mercury present?	(<u>\</u>		_		
	Digestion Log for cyanides present?	[
	Are pH values (pH<2 for all metals, pH>12 for cyanide) present in Digestion/Distillation Logs?	<u>[\sqrt{1}</u>		_		
	*Weights, dilutions and volumes used to obtain values.	,				
	Percent solids calculation present for soils/sediments	? [_		
1	Are preparation dates present on Digestion Log?	[<u></u>]		-		
A.1.7.2	Measurement read out record present? ICP	[<u>√</u>]				
	Flame AA	[<u>√</u>]		_		
	Furnace AA	[<u>\sqrt{1}</u>]		_		
	Mercury	<u>1</u>		_		
	Cyanides	1/1		_		
A.1.7.3	Are all raw data to support all sample analyses and QC operations present?	(<u>√</u> 1		_		
	Legible?	[<u>√</u>]		_		
	Properly Labeled?	<u>[1</u>		_		
	ACTION: If no for any of the above, write Telephone Record Log and contact laboratory.					

Page 6 of 30

Date: Dec. 1988

Title:	Evaluation of Metals Data for the Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Date: Number: Revisio		
		YES	NO	<u>N/</u>
A.1.8	Data Validation and Verification			
A.1.8.1	Calibration			
A.1.8.1.	Is record of at least 2 point calibration present for ICP analysis?	[<u>/</u>]		
	Is record of 5 point calibration present for Hg analysis?			******
ACTIO	ON: If no for any of the above, write in the contract problem/non-compliance section of the "Data Assessment Narrative".			
A.1.8.1.	2 Is record of 4 point calibration present for: Flame AA?			_
_	Furnace AA?			_
	Cyanides?	<u>(</u>		_
<u> </u>	OTE: 1. If less than 4, other standards must be run immed after calibration and be + 5% of true value. 2. For all AA and Cyanide analyses one calibration s is at CRDL level.	•		
ACTIO	N: Flag associated data as estimated if standards are not within +5% of true values (except CRDL calibration standard).			
A.1.8.1.	3 Is correlation coefficient less than 0.995 for:			
	Mercury Analysis?		[<u>/</u>]	
	Cyanide Analysis?		<u>[\sqrt{1}]</u>	
	Atomic Absorption Analysis?	\checkmark	[]	
ACTIO	N: If yes, flag the associated data as estimated.			
A.1.8.2	Form II A (Initial and Continuing Calibration Verifica	ition)-		
A.1.8.2.	l Present and complete for every metal and cyanide?			

Page 7 of 30

STANDARD OPERATING PROCEDURE Page 30 Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2Appendix A.1: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) N/AYES NO Present and complete for AA and ICP when both are used for same analyte? ACTION: If no for any of the above, prepare Telephone Record Log and contact laboratory. A.1.8.2.2 Circle all values on data summary sheet that are outside of contract windows. Are all calibration standards (initial and continuing) within control limits? Metals 90-110% Hg - 80-120%Cyanides 85-115% Are all calibration standards (initial and continuing) within 50-150%? Flag as estimated (J) all positive data (not flagged with a "U") analyzed between a calibration standard of 75-89% (65-79% for Hg; 70-84% for CN) or 111-125% (121-135% for Hg; 116-130% for CN) recovery and nearest good calibration standard. Qualify results <IDL as estimated (UJ), if the ICV or CCV %R is 75-89%(CN, 70-84%; HG, 65-79%). Reject (red-line) as unacceptable data if recovery of the ICV or CCV %R is outside the range 75-125% (CN, 70-130Z; Hg, 65-135Z).Was continuing calibration performed every 10 samples or every 2 hours? If no, flag the excess samples (eleventh and up) data as estimated (J). A.1.8.3 Form II B (CRDL Standards for AA and ICP) -A.1.8.3.1 Was a CRDL standard (CRA) analyzed for all AA metals (except Hg) and eyanida?

Was a 2xCRDL or 2xIDL (when IDL>CRDL) analyzed (CRI) for each ICP run? (Note: CRI for Al, Ba, Ca, Fe, Mg, Na,

or K is not required.)

Page 9 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

		YES	NO	N/A
	ACTION: If no for any of the above, flag estimated positive data falling within the range (*true value + CRDL).	•		
A.1.8.3.2	Was CRI analyzed after ICV/ICB and before the final CCV/CCB, or every four hours of ICP run?	<u>[\sqrt{1}</u>		-
	ACTION: If no, write in Contract Problem/Non-Compliance Section of the "Data Assessment Narrative".			
A.1.8.3.3	Are CRA and CRI standards within control limits:		,	
	Metals 90 - 110?	[]	<u> </u>	
	Cyanide 85 - 115?	<u>[</u>		
	ACTION: Flag the affected data within the range of true value + CRDL as estimated (J) if recovery is less than 90% (for CN <85%); flag the positive data within the range (true value + CRDL), if recovery is greater than 110% (for CN >115%).	•		
A.1.8.4	Form III (Initial and Continuing Calibration Blanks)			
A.1.8.4.1	Present and complete?	11/1		_
	For both AA and ICP when both are used for same analyte?	<u>[\sqrt{1}</u>		-
	ACTION: If no, prepare Telephone Record Log and contact laboratory.			
A.1.8.4.2	Circle all calibration blank values on Data Summary Sheet that are above IDL. Are all calibration blanks (when IDL CRDL) less than or equal to Contract Required Detection Limits (CRDL)?	[<u>\</u>		
	Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)?	(<u>√</u> 1*		

If no for any of the above, flag as estimated (J) on form I's all data <5xIDL between calibration blank with value over CRDL or IDL and nearest

good calibration blank. Flag five samples on either

side of the calibration blank.

ACTION:

^{*}True value of CRA or CRI standard.

Page 10 of 30

Date: Dec. 1988 Title: Evaluation of Metals Data for the Contract Laboratory Program Number: HW-2 Appendix A.1: Data Assessment - Contract Revision: Compliance (Total Review - Inorganics) NO N/A A.1.8.4.3 Was an initial calibration blank analyzed? Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (whichever is more frequent)? ACTION: If no, flag as estimated (J) all values <5xIDL not analyzed within 5 samples of calibration blank. A.1.8.5 FORM III (Preparation Blank) --(Note: The preparation blank for mercury is the same as the calibration blank.) A.1.8.5.1 Was one prep. blank analyzed for: each 20 samples? each batch? each matrix type? both AA and ICP when both are used for same analyte? ACTION: If no for any of the above, flag as estimated (J) all associated positive data <10 IDLs for which prep.blank was not analyzed. NOTE: If only one blank was analyzed for more than 20 samples, then first 20 samples analyzed do not have to be flagged as estimated (J). A.1.8.5.2 Do concentrations of prep. blank fall below two times IDL when IDL is greater than CRDL? If no, reject (red-line) all data that has ACTION: a concentration less than 10 times the prep. blank value, but not flagged with a "U" (less than). A.1.8.5.3 Is concentration of prep. blank greater than CRDL when IDL is less than or equal to CRDL?

If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the

prep. blank value?

Page 11 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

N/

Revision: 8

YES NO ACTION: If yes, reject (red-line) all associated data that has a concentration less than ten times the prep. blank value, but not flagged with a "U" (less than). A.1.8.5.4 Is concentration of prep. blank below the negative CRDL? If yes, reject (red-line) all associated data that has a concentration less than 10xCRDL. A.1.8.6 Form IV (1CP Interference Check Sample) A.1.8.6.1 Present and complete? (NOTE: Not required for furnace AA, flame AA, mercury, cyanide and Ca, Mg, K and Na.) A.1.8.6.2 Circle all values on Data Summary Sheet that are more than + 20% of true or established mean value. Are all Interference Check Sample results inside of control limits (+20%)? If no, is concentration of Al, Ca, Fe, or Mg lower in sample than in ICS? ACTION: If no, flag as estimated (J) those positive results for which ICS recovery is between 121-150%; flag all sample results as estimated if ICS recovery falls within 50-79%; reject (red-line) those sample results for which ICS

A.1.8.6.3 Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)?

flagged with a "U").

ACTION: If no, flag as estimated (J) all samples for which AL, Ca, Fe, or Mg is higher than in ICS.

A.1.8.7 Form V A (Spiked sample Recovery - Pre-Digestion/Pre-Distallation)(Note: Not required for Ca, Mg, K, and Na (both matrices), Al, and Fe (soil only.)

recovery is less than 50%; if ICS recovery is above 150%, reject positive results only (not

Date: Dec. 1988 Title: Evaluation of Metals Data for the Contract Laboratory Program Number: HW-2Revision: 8 Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics) YES NO N/A A.1.8.7.1 Present and complete for: each 20 samples? each matrix type? each conc. range (i.e. low, med., high)? For both AA and ICP when both are used for same analyte? If no for any of the above, flag as ACTION: estimated (J) all positive data less than four times spiking level for which spiked sample was not analyzed. NOTE: If one spiked sample was analyzed for more than 20 samples, then first 20 samples analyzed do not have to be flagged as estimated (J). 1.8.7.2 Was field blank used for spiked sample? If yes, was field blank described as such on Traffic Report? ACTION: If yes, flag all positive data less than 4 x spike added as estimated (J) for which field blank was used as spiked sample. A.1.8.7.3 Circle all values on Data Summary Sheet that are outside of control limits (75% to 125%). Are all recoveries within control limits? If no, is sample concentration greater than or equal to four times spike concentration? * no+ for all ACTION: If yes, disregard spike recoveries for analytes whose concentrations are greater than or equal to four times spike added. If no, circle those analytes on Form V for which sample concentration is less than four times the spike concentration. Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA?

If no, write in the contract problem/non compliance

section of "Data Assessment Narrative".

ACTION:

STANDARD OPERATING PROCEDURE

Page 12 of 30

Page 13 of 30

Title: Evaluation of Metals Data for the Date: Dec. 1988 Number: HW-2 Contract Laboratory Program Revision: Appendix A.1: Data Assessment - Contract 8 Compliance (Total Review - Inorganics) A.1.8.7.4 Aqueous N/A YES NO Are any spike recoveries: (a) less than 30%? (b) between 30-74%? (c) between 126-150%? (d) greater than 150%? ACTION: If less than 30%, reject all associated aqueous data; if between 30-74%, flag all associated aqueous data as estimated (J); if between 126-150%, flag as estimated (J) all associated aqueous data not flagged with a "U"; if greater than 150%, reject (red-line) all associated aqueous data not flagged with a "U". NOTE: If pre- digestion spike result is rejectable due to coefficient of correlation of MSA, analytical spike recovery, or duplicate injections criteria , disregard spike recovery on Form V. Flag the associated data as estimated(J). A.1.8.7.5 Soil/Sediment Are any spike recoveries: (a) less than 10%? (b) between 10-74%? (c) between 126-200%? (d) greater than 200%? ACTION: If less than 10%, reject all associated data; if between 10-74%, flag all associated data as estimated; if between 126-2007, flag as estimated all associated data was not flagged with a "U"; if greater than 200%, reject all associated data not flagged with a "U". A.1.8.8 Form VI (Lab Duplicates) A.1.8.8.1 Present and complete for: each 20 samples?

each matrix type?

each concentration range (i.e. low, med., high)?

Page 14 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2 Revision: 8

		YES	NO	N/
	both AA and ICP when both are used for same analyte?	[]	_	
	ACTION: If no for any the above, flag as estimated (J) all data >CRDL for which duplicate sample was not analyzed. Note: If one duplicate sample was analyzed for more than 20 samples, then first 20 samples do not have to be flagged as estimated.			
A.1.8.8.2	Was field blank used for duplicate analysis?			_
	If yes, was field blank identified as such on Traffic Report?		[]	<u>\</u>
	ACTION: If yes, flag all data >CRDL as estimated (J) for which field blank was used as duplicate.			
1.8.8.3	Circle all values on Data Summary Sheet that are outside control limits: Aqueous Samples (a) 20% RPD or (b)+ CRDL			
	Soil Samples (a) 35% RPD or (b)+ CRDL			
	Are all values within control limits?	[]	<u> </u>	
	If no, are all results outside the control limits flagged with an * on Form I's and VI?	[1]		
	ACTION: If no, write in the contract problems/non-compliance section of "Data Assessment Narrative	e".		
	NOTE: 1. RPD is not calculable for an analyte of the sample - duplicate pair when both values are less than IDL. 2. If lab duplicate result is rejectable due to co- of correlation of MSA, analytical spike recover duplicate injections criteria, do not apply pre- criteria. Flag the associated data as estimated	y, or cision		
1.8.8.4	Is any value for sample duplicate pair less than CRDL and other value greater than or equal to 10 x CRDL?		12	***

ACTION: If yes, reject associated data.

Page 15 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

		YES	NO	N/A
A.1.8.8.5	Aqueous			
	Is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5 times CRDL?	\checkmark	[]	
	Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5 times CRDL?		[]	
	ACTION: If yes, reject (red-line) all associated data.			
A.1.8.8.6	Soil/Sediment			
	Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) : >50%?		<u> </u>	
	>100%?		[_]	

Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL):

ACTION: Flag the associated data as estimated if RPD >50% or Diff.>CRDL; reject data if RPD >100% or Diff.>2xCRDL.

>CRDL?

A.1.8.9 Field Duplicates

A.1.8.9.1 Were field duplicates analyzed?

ACTION: If yes, prepare a Form VI for each field duplicate pair, report concentrations of soils in ug/l on wet weight basis and calculate RPDs.

NOTE: 1. Do not calculate RPD when both values are less than IDL.

- Reject (red-line) all associated data only for field duplicates.
- 1.8.9.2 Circle all values on Form VI for field duplicates that are outside control limits:

Aqueous Samples (a) 20% RPD or (b)+ CRDL

Soil Samples (a) 35% RPD or (b)+ CRDL

14 I 001 1554

Title:	Title: Evaluation of Metals Data for the Contract Laboratory Program Appendix A.l: Data Assessment - Contract Compliance (Total Review - Inorganics)			8
		YES	NO	N/1
	Are all values within control limits?	[]	· ———	
A.1.8.9	3 Is any value for sample duplicate pair less than CRDL and other value greater than or equal to 10 x CRDL?		[<u></u>]	-
	ACTION: If yes, reject associated data.			
A.1.8.9	4 Aqueous			
	Is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5 times CRDL?		<u>[\sqrt{1}</u>	
	Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5 times CRDL?	<u>V</u>	[]	
	ACTION: If yes, reject (red-line) all associated data.			
A.1,.8.9.	5 Soil/Sediment			
	Is any RPD (where sample and duplicate are both greater than 5 times CRDL):	•		
	<u>></u> 50 ₹ ?		[]	
	<u>≥</u> 100%?	\searrow	· []	_
	Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL):			
	>CRDL?	_	[]	-
	>2xCRDL?		[]	
	ACTION: Flag the associated data as estimated if RPD>50 Diff.>CRDL; reject data if RPD>100% or Diff.>2x			
A.1.8.10	Form VII (Laboratory Control Sample) (Note: LCS - not required for aqueous Hg and cyanide analyses.)			
1.8.10	0.1 Was one LCS prepared and analyzed for: every 20 water samples?	11		
•	every 20 solid samples?	[<u>v</u>]		
	both AA and ICP when both are used for same analyte?	[

NLI 001 1225

STANDARD OPERATING PROCEDURE

Page 16 of 30

Page 17 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

NO

N/A

Revision: 8

YES

ACTION: If no for any of the above, prepare Telephone Record Log and contact laboratory for submittal of results of solid LCS. Flag as estimated(J) all data for which LCS was not analyzed.

NOTE: If only one LCS was analyzed for more than 20 samples, then first 20 samples close to LCS do not have to be flagged as estimated.

A.1.8.10.2 Aqueous

Circle all LCS values outside of control limits(80 - 120% - except aqueous Ag and Sb).

Is any LCS recovery: less than 50%? between 50% and 79%?

between 121% and 150%?

greater than 150%?

ACTION: Less than 50%, reject (red-line) all data; between 50% and 79%, flag all associated data as estimated (J); between 121% and 150%, flag all positive (not flagged with a "U") results as estimated; greater than 150%, reject all positive results.

A.1.8.10.3 Solid LCS

NOTE: 1. If IDL of an analyte is equal to or greater than True Value of LCS, disregard the following criteria.

- 2. If "Found" value of LCS is rejectable due to duplicate injections or analytical spike recovery criteria, disregard LCS recovery; flag the associated data as estimated(J).
- a. If the Solid LCS recovery for any analyte falls outside EPA control limits, qualify all sample results >IDL as estimated (J).
- b. If the LCS results are higher than the control limits and the sample results < IDL, the data are acceptable.
- c. If the LCS results are lower than the control limits, qualify all sample results < IDL as estimated(UJ).

STANDARD OPERATING PROCEDURE Page 18 of 30 Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2Appendix A.1: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) Yes NO N/ A.1.8.11 Form IX (ICP Serial Dilution) -A.1.8.11.1 Was Serial Dilution analysis performed for: each 20 samples? each matrix type? each concentration range (i.e. low, med.)? If no for any of the above, flag all positive data greater than or equal to 10xIDLs as estimated (J) for which Serial Dilution Analysis was not performed, and summarize the deficiency on the DPO report. A.1.8.11.2 Was field blank(s) used for Serial Dilution Analysis?

ACTION: If yes, flag all associated data > 10 x IDL as estimated (J).

with an "E" on Form I's and Form IX?

A.1.8.11.3 Circle all values on Data Summary Sheet that are ouside of control limit (+10 %). Are all values within + 10 % ? [\bigvee] The tie > 10 's Sande Reed to the Control Are results outside control limit flagged

If yes, was field blank described as such on Traffic

ACTION: If no, write in the contract problem/non-compliance

section of the"Data Assessment Narrative".

A.1.8.11.4 Are any % Diff. values: > 107 ?

Report?

> 100% ?

ACTION: Flag as estimated (J) all associated sample results equal to or greater than 10xIDLs for which percent difference is greater than 10% but less than 100%. Reject (red-line) all associated sample results equal to or greater than 10xIDLs for which PD is greater than or equal to 100%.

Page 19 of 30

STANDARD OPERATING PROCEDURE Title: Evaluation of Metals Data for the Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

MLI 001 1228

	YES	NO	<u>N/</u>
A.1.8.12 Furnace Atomic Absorbtion (AA) QC Analysis			
A.1.8.12.1 Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed by GFAA?	<u>.</u>		-
ACTION: If no, reject the data on Form I's for which duplicate injections were not performed.			
A.1.8.12.2 Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or Coefficient of Variation (CV) for concentration greater than CRDL?	[]	<u>√</u>	
Was a dilution analyzed for sample with post digestion spike recovery less than 40%?	<u>[\sqrt{1}]</u>		
ACTION: If no for any of the above, flag all the associated data as estimated (J).			
.1.8.12.3 Is *post digestion spike recovery less than 10% or greater than 150% for any result?	<u> </u>	[]	
ACTION: If yes, reject (red-line) the affected data if recovery is <10%; reject data not flagged with if spike recovery is >150%. NOTE: Reject the data only if the affected sample was not subsequently analyzed by Method of Standard Addition.	3		
A.1.8.13 Form VIII (Method of Standard Addition Results)			
A.1.8.13.1 Present?	[]	1	
If no, is any Form I result coded with "S" or a "+"?			
ACTION: If yes, write request on Telephone Record Log a contact laboratory for submittal of Form VIII.	and		
A.1.8.13.2 Is coefficient of correlation for MSA less than 0.990 for any sample?	or 	[]	<u>\</u>

ACTION: If yes, reject (red-line) affected data.

^{*} Post digestion spike is not required on the pre-digestion spiked sample when predigestion spike recovery is within control limits of 75-125% or when $SR \ge 4xSA$.

Page 20 of 30

Title: Evaluation of Metals Data for the Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

NLI 001

1229

		YES	NO	<u>N/</u>
A.1.8.13.3	Was *MSA required for any sample but not performed?	<u>/</u>	[]	
	Is coefficient of correlation for MSA less than 0.995?		[]	<u>\</u>
arse stable	Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run?		[]	<u> </u>
	ACTION: If yes for any of the above, flag all the associated data as estimated (J).			
A.1.8.13.4	Was proper quantitation procedure followed correctly as outlined in the SOW on page E-16 through E-17?		, <u></u>	<u>\</u>
	ACTION: If no, note exception under contract problem/no compliance of data assessment narrative, or prepare a seperate list.	in de la large n=large Angle		
A.1.8.14	Dissolved/Total or Inorganic/Total Analytes -			
A.1.8.14.1	Were any analyses performed for dissolved as well as total analytes on the same sample(s).	See See See See See See See See See See	[<u>/</u>]	and the control of th
Eller Andrew Communication of the Communication of	Were any analyses performed for inorganic as well as tot (organic + inorganic) analytes on the same sample(s)?	al .	n, en treje i sedestre en	<u> </u>
	If yes, apply the following questions only if inorganic (or dissolved) results are (i) above CRDL, and (ii) greater than total constituents.	t en en og og stigen til en en en en en en en en en en en en en		
A.1.8.14.2	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 10%?			<u>\</u>
A.1.8.14.3	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 50%?	And the second s	· []	¥
en en en en en en en en en en en en en e	NOTE: Prepare a list comparing differences	-		

when both are above CRDL.

between all dissolved (or inorganic) and total analytes. Compute the differences as a percent of the total analyte only

Page 21 of 30

Title: Evaluation of Metals Data for the
Contract Laboratory Program
Appendix A.1: Data Assessment - Contract
Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2 Revision: 8

		YES	NO	<u>N/</u>
<u>4</u>	ACTION: If more than 10%, flag both dissolved (or inorga and total values as estimated (J); if more than 50%, reject (red-line) the data for both valuee.	nic)		
A.1.8.15 E	Form I to IX			
A.1.8.15.1 A	are all the Form I through Form IX labeled with: Laboratory name?	[]		7
	Case number?	[]		
	EPA sample No.?	[]		<u>. L</u>
	SDG No.?	[_]		
	Contract No.?	[]		
_	Correct units?	[]		
•	Matrix?	[]		_
<u>.</u>	CCTION: If no for any of the above, note under contract problem/non-compliance section of narra of the "Data Assessment Narrative".	tive.		
	oo any computation/transcription errors exceed 10% of reported values on Forms I-IX for:	٠		
(NOTE: Check all forms against raw data.)			
	(a) all analytes analyzed by ICP?		[<u>~</u>]	-
	(b) all analytes analyzed by GFAA?		<u>[1</u>	
	(c) all analytes analyzed by AA Flame?		[]	
·	(d) Mercury?		[]	_
	(e) Cyanide?		[]	_
<u> </u>	ACTION: If yes, prepare Telephone Log, contact laborator for corrected data and correct errors with red	y		

pencil and initial.

Title: Evaluation of Metals Data for the

Page 22 of 30

Date: Dec. 1988

Ap	pendix A.	boratory Progra l: Data Assess (Total Revi e w -	ment - Contract	Number: Revision:	HW-2 8	
				YES	NO	N/
A.1.8.16	Form I (Field Blank) -				
	that are Do concer times ID	greater than 2 ntrations of fi	values on Data Summary Sheet xIDL. eld blank(s) fall below two meters of associated aqueous			
		s field blank criteria?	value already rejected due to	[]		7
	ACTION:	aqueous and so blank) that ha	(red line) all associated il/sediment data (except field s a concentration less than field blank value not flagged ss than).			
.1.8.17	Form XI, Parameter		rterly Verification of Instrumer	ıtal		
A.1.8.17.1	Is quarte	erly verificati	on report present for:			
		•	Instrument Detection Limits?	الْكِيْ)		
		ICP Inte	relement Correction Factors?			
			ICP Linear Ranges?	<u>(\ </u>		_
	ACTION:	If no, contact	DPO of the lab.			
A.1.8.17.2		(Instrument De for Cyanide.)	tection Limits) - (Note: IDL is	not		
	Are IDLs	present for:	all the analytes?			_
			all the instruments used?	[]		_
	For both analyte?	AA and ICP whe	n both are used for same	<u>(\sigma_1)</u>		_
	ACTION:	If no for any	of the above, prepare			

Telephone Record Log and contact laboratory.

Appendix A.l: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) YES NO N/A Is IDL greater than CRDL for any analyte? If yes, is the concentration of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than $5 \times IDL$? MMB ACTION: If no, reject (red-line) all values less than five times IDL of the instrument whose IDL exceeds CRDL. A.1.8.17.3 Form XII (Linear Ranges) Was any sample result higher than high linear range of ICP by more than 10%? Was any sample result higher than the highest calibration standard for non-ICP parameters? If yes for any of the above, was dilution performed on the sample to bring raw data in linear range or below the highest standard.

If no, flag the result reported on Form I

as estimated(J).

STANDARD OPERATING PROCEDURE

Evaluation of Metals Data for the

Contract Laboratory Program

MMB ACTION:

Title:

Page 23 of

Number:

Date: Dec. 1988

30

HW-2

Page 24 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program
Appendix A.2: Data Assessment Narrative

Date: Dec. 1988 Number: HW-2 Revision: 8

.e.				•	
Case#		Site		Matrix:	Soil
Reviewer		Lab		·	Water
Contrac	tor	_			Other
					•
			•		
A.2.1	All data are of acc			No	
	If no, exceptions rejection or qualif	are noted below wi ication as estimat	th reason(s) f	or	
				•	
	; ;				
e servere.	1:				
	•				
					•
				-	
·					
	· ·				
	:				
		•			
			ale and a second of the second		
		· · ·			
•					
,					or the grange and any

Page 25 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Dec. 1988 Number: HW-2

Revision: 8

NLI 001 1234

A.2.1	(continuatio	on)			
-					
_					
-					
-					
-			<u> </u>	·	•
					· · · · · · · · · · · · · · · · · · ·
-		•			
-					
-	· ·				
•					
-	•	•			•
4 2 2	Contract Dr		9.1		
A. Z. 4	Contract Pr	coblems/Non-com	ibTrauce		
· · · · · · · · · · · · · · · · · · ·					
-					
		•			
		•			
-					
10		<u> </u>			
MI	MB Keviewer:_	Signature		 Date:	
racto	or Reviewer:_			Date:	
Ž	_	Signature			
1	Verified by:			 Date:	

Page 26 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.3: Contract Non-Compliance

Reviewer's Initial

(SMO Report)

Date: Dec. 1988 Number: HW-2 Revision: 8

CONTRACT NON-COMPLIANCE (SMO REPORT)

Regional Review of Uncontrolled Hazardous Waste Site Contract Laboratory Data Package

		CASE NO.
Inorganic	opied (laboratory name) data package received at Representation of the control of	gion II has been reviewed and the quality assurance
SMO Sample	• No.:	
onc. & Ma	atrix:	
Contract N	No. WA87-K025, K026, K027 (SOW7) ciated reports be provided by	87) requires that specific analytical work be done any the contractor to the Regions, EMSL-LV, and SMO. The performance were based on an examination of:
	Data CompletenessMatrix Spike Results	Blank Analysis Results
`.	 Calibration Standards 	Results * MSA Results
:ems of r		e contract are described below.
		
i		
:		•

Date

Page 27 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.4: Mailing List for Data Reviewers

Date: Dec. 1988 Number: HW-2

Revision: 8

DPO MATLING LIST FOR DATA REVIEWERS

- 1. USEPA Region I (ESD) 60 Westview Street Lexington, MA 02173 Deb Szaro (617) 861-4312 CT, ME, MA, NH, RI, VI
- 3. USEPA Region III (CRL) 839 Bestgate Road Annapolis, MD 21401 Chuck Sands (301) 266-9180 DE, MD, PA, VA, WV, DC
- 5. USEPA Region V (ESD) 536 South Clark Street Tenth Floor, CRL Chicago, IL 60605 Pat Churilla 312-353-9087 IL, IN, MI, MN, CH, WI
- 7. USEPA Region VII Laboratory 25 Funston Road Kansas City, KS 66115 Debra Morey (913) 236-3881 IO, KS, NB, MO
- 9. USFPA Region IX (ESD) QA Management Section 215 Fremont Street San Francisco, CA 94105 Kent Kitchingman (415) 974-0924 AZ, CA, HI, NV, American Samoa, Guam Trust Territories of Pacific Islands, Wake Island
- 11. Sample Management Office Viar and Company P.O. BOX 818 Alexandria, VA 22313
- 13. Duane Geuder (OS-230) USEPA 401 "M" Street, S.W. Washington, DC 20460

- 2. USEFA Region II (ESD) Woodbridge Avenue Edison, New Jersey 08837 Lisa Gatton Vidulich (201) 321-6676 NJ, NY, PR, VI
- 4. USEPA Region IV (ESD) Analytical Support Branch College Station Road Athens, GA 30613 Tom Bennett, Jr. (404) 546-3112 AL, FL, GA, KY, MS, NC, SC, TN
- 6. USEPA Region VI (ESD) Monterey Park Plaza, Bldg. C 6608 Hornwood Drive Houston, TX 77074 David Stockton (713) 953-3425 AL, LA, NM, TX, OK
- 8. USEFA Region VIII Laboratory BOX 25366 Denver Federal Center Lakewood, CO 80225 Eva Hoffman (303) 236-7371 CO, ND, SD, UT, WY, MT
- 10. USEPA Region X Laboratory P.O. BOX 549 Manchester, WA 98353 Gerald Mith (206) 442-0370 AK, ID, OR, WA
 - 12. Edward Kantor USEPA EMSL-LV 944 E. Harmon Avenue BOX 93478 Las Vegas, NV 89119

ATTACHMENT

Page 1 of 30

Date: Dec. 1988

Title: Evaluation of Metals Data for the Contract Laboratry Program

Number: HW-2

Revision: 8

1.0 Scope

- 1.1 This procedure is applicable to inorganic data obtained from contractor laboratories working for Hazardous Waste Site Contract Laboratory Program (CLP).
- 1.2 The data validation is based upon analytical and quality assurance requirements specified in Statement of Work (SOW) 7/87.
- 2.0 Responsibilities Data reviewers will complete the following tasks as assigned by the Data Review Coordinator:
 - 2.1. For a total review:
 - 2.1.1 <u>Data Assessment</u> "Total Review-Inorganics" Checklist Appendix (A.1). The reviewer must answer every question on the checklist.
 - 2.1.2 Data Assessment Data Assessment Narrative (Appendix A.2)

 The answer on the checklist must match the action in the narrative (appendix A.2) and on Form I's.
 - 2.1.3 Contract Non-Compliance SMO Report (Appendix A.3)

 This report is to be completed only when a serious contract violation is encountered, or upon the request of the Data Review Manager or Deputy Project Officer (DPO). Forward 5 copies: one each for internal files, appropriate Regional DPO, Sample Management Office (SMO) and last two addresses of Mailing List for Data Reviewers (Appendix A.4). In other cases, all contract violations should be appended to end of Data Assessment Narrative (Sec. A.2.2).
 - 2.1.4 Data Summary Sheet Summary of Inorganic Quality Control Data (Appendix A.5).

 Enter on Data Summary Sheet all values from Forms I through IX. Circle all values out of control limits in red.
 - 2.1.5 CLP Data Assessment Summary Forms
 - 2.1.5.1 Appendix A.6

Fill in the total number of analytes analyzed by different analyses and the number of analytes rejected or flagged as estimated due to corresponding quality control criteria. Place an "X" in boxes where analyses were not performed, or criteria do not apply.

2.1.5.2 Appendix A.7

Data reviewer is also required to fill out Inorganic Regional Data Assessment form (Appendix A.7) provided by EPA Headquarters. Codes listed on the form will be used to describe the Data Assessment Summary.

Page 2 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Date: Dec. 1988
Number: HW-2
Revision: 8

Revision: 8

2.1.6 Data Review Log: Each data reviewer will maintain a log of reviews completed

to include: a. date of start of case review

b. date of completion of case review

c. site

d. case number

e. contract laboratory

f. number of samples

g. matrix

h. hours worked

i. reviewer's initials

The log is kept in MMB office.

2.1.7 Telephone Record Log - the data reviewer should enter the bare facts of inquiry, before initiating any phone conversation with CLP laboratory. After the case review has been completed, mail white copy of Telephone Record Log to the laboratory and pink copy to SMO. File yellow copy in the Telephone Record Log folder, and attach a xerox copy of the Telephone Record Log to the completed Data Assessment Narrative (Appendix A.2).

2.1.8 Forwarded Paperwork

- 2.1.8.1 Upon completion of review, the following are to be fowarded to the Regional Sample Control Center (RSCC) located in the Surveillance and Monitoring Branch:
 - a. data package
 - b. completed data assessment checklist (Appendix A.1, original)
 - c. SMO Contract Compliance Screening (CCS)
 - d. Data Summary Sheet (Appendix A.5) along with completed Data Assessment Narrative (Appendix A.2)
 - e. Record of Communication (copy)
 - f. CLP Reanalysis Request/Approval Record (original + 3 copies)
 - g. Appendix A.7 (original).
- 2.1.8.2 Forward 4 copies of completed Data Assessment Narrative (Appendix A.2) along with 2 copies of the Inorganic Data Assessment Form (Appendix A.7) and Telephone Record Log, if any,: one each for appropriate Regional DPO, Sample Management Office (SMO), and last two addressees of Mailing List for Data Reviewers (Appendix A.4) (the Inorganic Data Assessment form does not go to the last two addressees).
 - 2.1.9 <u>Filed Paperwork</u> Upon completion of review, the following are to be filed within MMB files:
 - a. completed Data Assessment Narrative (Appendix A.2)
 - b. Telephone Record Log (copy)
 - c. Data Summary Sheet Summary of Inorganics Quality Control Data (copy)
 (Appendix A.5)
 - d. Record of Communication (original)

NLI 001 1239

3 of 30 Page

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Date: Dec. 1988 Number: HW-2

Revision: 8

e. SMO Report (copy)

- f. CLP Data Assessment Summary Form (Appendix A.6 and A.7).
- g. CLP Reanalysis Request/Approval Record (copy)
- h. checklist of Total Review (Appendix A.1).

3.0 Data Completeness

Indicate incomplete data package on the computer tracking sheet. Authorized contractor personnel may contact the laboratory contact after discovery of an incomplete data package. If a laboratory will not return phone calls or does not respond to requests, notify the DPO of the Region in which the laboratory is located.

- 4.0 Rejection of Data All values determined to be unacceptable on the Inorganic Analysis Data Sheet (Form I) must be lined over with a red pencil. As soon as any review criteria causes data to be rejected, that data can be eliminated from any further review or consideration.
- .0 Acceptance Criteria In order that reviews be consistent among reviewers, acceptance criteria as stated in Appendix A.1 should be used. Additional guidance can be found in the National Inorganic Functional Guidelines.
- 6.0 SMO Contract Compliance Screening (CCS) This is intended to aid reviewer in locating any problems, both corrected and uncorrected. However, the validation should be carried out even if CCS is not present. Resubmittals received from laboratory in response to CCS must be used by the reviewer.
- 7.0 Request for Reanalysis Data reviewers must note all items of contract noncompliance within Data Assessment Narrative. If holding times and sample storage times have not been exceeded, DPO may request reanalysis if items of non-compliance are critical to data assessment. Requests are to be made on "CLP Re-Analysis Request/Approval Record".
- 8.0 Record of Communication Provided by the Regional Sample Control Center (RSCC) to indicate which data packages have been received and are ready to be reviewed.

Page 4 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2 Revision: 8

		YES	NO	N/A
A.1.1	Contract Compliance Screening Report (CCS) - Present?			\checkmark
A.1.2	Record of Communication (from RSCC) - Present?	[]		<u>~</u>
	ACTION: If no, request from RSCC.			
A.1.3	Sample Traffic Report - Present or on file?	[1]		
	Legible?	[<u>√</u>]		
	ACTION: If no, request from Regional Sample Control Center (RSCC).			
A.1.4	Cover Page - Present?	[]		<u>\</u>
<u> </u>	Is cover page properly filled in and signed by the manager or the manager's designee?	[]		<u> </u>
	ACTION: If no, prepare Telephone Record Log, and contact laboratory.			
	Do numbers of samples correspond to numbers on Record of Communication?	[]		~
	Do sample numbers on cover page agree with sample numbers on:			
	(a) Traffic Report Sheet?	[]		<u> </u>
	(b) Form I's?	[]		<u> </u>
	ACTION: If no for any of the above, contact RSCC for clarification.			
A.1.5	Form I (Final Data) - Are all Form I's present and complete?	$1\sqrt{1}$		
	ACTION: If no, prepare telephone record log and contact laboratory for submittal.			
	Are correct units (ug/l for waters and mg/kg for soils) indicated in Form I's?	<u>[\sqrt{1}</u>		

Title: Evaluation of Metals Data for the Date: Dec. 1988 Number: Contract Laboratory Program HW-2Revision: 8 Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics) N/A YES NO Are sample results for each parameter corrected for percent solids on solids? Are EPA sample # s and corresponding laboratory sample ID # s the same as on the Cover Page, Form I's and in the raw data? Do any computation/transcription errors exceed 10% of reported values? Are all "less than IDL" values properly coded with "U"? If no for any of the above, prepare Telephone Record Log, and contract laboratory for corrected data. Was a brief physical description of samples given on Form I's? Were the result qualifiers used correctly with final data? Were any samples diluted beyond requirements of contract? If yes, were dilutions noted on Form I's? If no for any of the above, note under contract problem/non-compliance of the"Data Assessment Narrative". A.1.6 Holding Times - (aqueous samples) (Examine sample traffic reports and digestion/distillation logs.) Mercury (28 days). exceeded? Cyanide (14 days). exceeded? Other Metals (6 months). exceeded? Soil samples Metals and Cyanide (6 months)....exceeded?

NOTE: Prepare a list of all samples and analytes for which holding times have been exceeded. Specify the number of days from date of collection to the

date of analysis (from raw data). Attach to checklist.

STANDARD OPERATING PROCEDURE

Page 5

30

of

·	Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)		Number: Revision	HW-2	
			YES	<u>NO</u>	<u>n/</u>
	ACTION: If yes, reject (red-line) val Instrument Detection Limit (I estimated (J) the values above	DL); flag as			
A.1.7	Raw Data				
A.1.7.1	Digestion Log* for flameAA/ICP present	?	<u>[\sqrt{1}</u>		_
	Digestion Log for furnace AA present?		[<u>✓</u>]		
	Digestion Log for mercury present?		[]	·	<u>\</u>
	Digestion Log for cyanides present?		[]		\checkmark
	Are pH values (pH<2 for all metals, pH present in Digestion/Distillation Logs		<u>(_1</u>		
	*Weights, dilutions and volumes used to	obtain values.		,	
	Percent solids calculation present for	soils/sediments?	[j	<u> </u>	
	Are preparation dates present on Diges	tion Log?	<u>[1</u>	· —	_
A.1.7.2	Measurement read out record present?	ICP	[<u>√</u>]		·
	**************************************	Flame AA	<u>[\sqrt{]}</u>		
		Furnace AA	[<u>√</u>]		
		Mercury	[]		\checkmark
		Cyanides	[]		\checkmark
A.1.7.3	Are all raw data to support all sample QC operations present?	analyses and			
	Legible?				
	Properly Labeled?		<u>(\sqrt{1}</u>		
	ACTION: If no for any of the above, Record Log and contact labo				

Title: Evaluation of Metals for the Contract

6 of 30

Date: Dec. 1988

Page

	Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Number: Revision	HW−2 : 8	
		YES	NO	N/A
A.1.8	Data Validation and Verification			
	•			
A.1.8.1	Calibration			
A.1.8.1.	<pre>1 Is record of at least 2 point calibration present for ICP analysis?</pre>	<u>[√</u>]		
	Is record of 5 point calibration present for Hg analysis?	[]		<u> </u>
ACTIO	N: If no for any of the above, write in the contract problem/non-compliance section of the "Data Assessment Narrative".			
A.1.8.1.	2 Is record of 4 point calibration present for: Flame AA?	<u>(√</u> 1		
	Furnace AA?	(<u>√</u>)		
	Cyanides?	[_]		V
<u> </u>	OTE:1. If less than 4, other standards must be run immediated after calibration and be + 5% of true value. 2. For all AA and Cyanide analyses one calibration states at CRDE level.	•		
ACTIO	N: Flag associated data as estimated if standards are not within +5% of true values (except CRDL calibration standard).			
A.1.8.1.	3 Is correlation coefficient less than 0.995 for:			
	Mercury Analysis?		[]	$\underline{\vee}$
	Cyanide Analysis?		[]	<u> </u>
	Atomic Absorption Analysis?		1/1	
ACTIO	N: If yes, flag the associated data as estimated.			
	• • •			
1.8.2	Form II A (Initial and Continuing Calibration Verificat:	lon)-		
A.1.8.2.	l Present and complete for every metal and cyanide?	1/1	_	_

Title: Evaluation of Metals Data for the

Page

7 of 30

Date: Aug. 1988

NLI 001 1244

	Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Number: Revision:	HW-2 8	. t
		YES	NO	N/A
	Present and complete for AA and ICP when both are used for same analyte?	[<u>\</u>		
	ACTION: If no for any of the above, prepare Telephone Record Log and contact laboratory.			
A.1.8.2.	2 Circle all values on data summary sheet that are outside of contract windows. Are all calibration standards (initial and continuing) within control limits?		,	
	Metals 90-110%	[]	\checkmark	
- 5,	Hg - 80-120%			~ <u>\</u>
	Cyanides 85-115%	[]		\checkmark
	Are all calibration standards (initial and continuing) within 50-150%?	<u>1</u>	_	
	ACTION: Flag as estimated (J) all positive data (not flagged with a "U") analyzed between a calibration standard of 75-89% (65-79% for Hg; 70-84% for CN) or 111-125% (121-135% for Hg; 116-130% for CN) recovery and nearest good calistandard. Qualify results <idl %%="" (cn,="" (red-line)="" (u)="" 65-135%).<="" 70-130%;="" 70-84%;="" 75-125%="" 75-89%="" as="" ccv="" data="" estimated="" hg)="" hg,="" icv="" if="" is="" or="" outside="" range="" recovery="" reject="" td="" the="" unacceptable=""><td>7), , 65-79%).</td><td></td><td></td></idl>	7), , 65-79%).		
	Was continuing calibration performed every 10 samples or every 2 hours?	<u>[\sqrt{1}</u>		
	ACTION: If no, flag the excess samples (eleventh and up) data as estimated (J).		•	
A.1.8.3	Form II B (CRDL Standards for AA and ICP) -			
A.1.8.3.	l Was a CRDL standard (CRA) analyzed for all AA metals (except Hg) and cyanide?	<u>[_1</u>		
	Was a 2xCRDL or 2xIDL (when IDL>CRDL) analyzed (CRI) for each ICP run? (Note: CRI for Al, Ba, Ca, Fe, Mg, Na, or K is not required.)	: i <u>√</u> 1		
$\overline{}$				

Title: Evaluation of Metals Data for the

Page

8 of 30

Date: Dec. 1988

Page 9 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

		YES	<u>NO</u>	N/A
	ACTION: If no for any of the above, flag estimated positive data falling within the range (*true value + CRDL).	•		
A.1.8.3.2	Was CRI analyzed after ICV/ICB and before the final CCV/CCB, or every four hours of ICP run?	[<u>/</u>]		
	ACTION: If no, write in Contract Problem/Non-Compliance Section of the "Data Assessment Narrative".			
A.1.8.3.3	Are CRA and CRI standards within control limits:		,	
	Metals 90 - 110?	[]	<u></u>	 ,
	Cyanide 85 - 115?	[]		<u>/</u>
	ACTION: Flag the affected data within the range of true value + CRDL as estimated (J) if recovery is less than 90% (for CN <85%); flag the positive data within the range (true value + CRDL), if recovery is greater than 110% (for CN >115%).	e		·
A.1.8.4	Form III (Initial and Continuing Calibration Blanks)			
A.1.8.4.1	Present and complete?	[<u>\sqrt{1}</u>]		. <u> </u>
	For both AA and ICP when both are used for same analyte?			
	ACTION: If no, prepare Telephone Record Log and contact laboratory.			
A.1.8.4.2	Circle all calibration blank values on Data Summary Sheet that are above IDL. Are all calibration blanks (when IDL CRDL) less than or equal to Contract Required Detection Limits (CRDL)?	(<u>√</u> 1	*	. <u>-</u>
	Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)?	[]	<u>\</u>	/ [*] _
	ACTION: If no for any of the above, flag as estimated (J	·)		

on form I's all data <5xIDL between calibration blank with value over CRDL or IDL and nearest

side of the calibration blank.

good calibration blank. Flag five samples on either

*True value of CRA or CRI standard.

IF any blank values owe above the IDL, Action weeks which awe 5x the highest concentration of that eliments contamination in any blank overcal culated Specific Actions

when the concentration is greater than the IDL, but less than the Action level report the sample concentration detected with a "U"

2 when the sample concentration is greater than the Action level, report the sample concentration unqualified

Page 10 of 30

Title:	Contract La Appendix A.	of Metals Data for the boratory Program 1: Data Assessment - Contract (Total Review - Inorganics)	Date: De Number: Revision:	e. 1988 HW-2 8	3
			YES	NO	N/A
A.1.8.4	.3 Was an i	nitial calibration blank analyzed?	[<u>~</u>]		
		ntinuing calibration blank analyzed after samples or every 2 hours (whichever is more)?	<u>[\sqrt{1}</u>		
	ACTION:	If no, flag as estimated (J) all values <5xIDL not analyzed within 5 samples of calibration b			
A.1.8.5	FORM III	(Preparation Blank)			
		The preparation blank for mercury is the same alibration blank.)			
A.1.8.5	.1 Was one	prep. blank analyzed for: each 20 samples?	[<u></u>		
		each batch?			
		each matrix type?			
•	both AA	and ICP when both are used for same analyte?	<u>1</u>		
	ACTION: NOTE:	If no for any of the above, flag as estimated all associated positive data <10 IDLs for which prep. blank was not analyzed. If only one blank was analyzed for more than 20 samples, then first 20 samples analyzed on not have to be flagged as estimated (J).	h		
A.1.8.5		ntrations of prep. blank fall below two times IDL is greater than CRDL?	t <u>√</u> i	مبنتيس	
	ACTION:	If no, reject (red-line) all data that has a concentration less than 10 times the prep. blank value, but not flagged with a "U" (less than).			
A.1.8.5		ntration of prep. blank greater than CRDL is less than or equal to CRDL?		[<u>√</u>]	
	least co	is the concentration of the sample with the ncentrated analyte less than 10 times the ank value?		اا	<u>\\</u>

Page 11 of 30

Title: Evaluation of Metals Data for the

..1.8.7

(soil only.)

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

		YES	NO	N/A
•	ACTION: If yes, reject (red-line) all associated data that has a concentration less than ten times the prep. blank value, but not flagged with a "U" (less than).		,	
A.1.8.5.4	Is concentration of prep. blank below the negative CRDL?		[<u>\</u>]	
. *	ACTION: If yes, reject (red-line) all associated data that has a concentration less than 10xCRDL.			٠.
A.1.8.6	Form IV (1CP Interference Check Sample)	/		
A.1.8.6.1	Present and complete?	[<u>\sqrt1</u>]		
	(NOTE: Not required for furnace AA, flame AA, mercury, cyanide and Ca, Mg, K and Na.)			
A.1.8.6.2	Circle all values on Data Summary Sheet that are more than + 20% of true or established mean value. Are all Interference Check Sample results inside of control limits (+ 20%)?	1 <u>√</u> 1	-	
	If no, is concentration of Al, Ca, Fe, or Mg lower in sample than in ICS?	[]	_	<u></u>
	ACTION: If no, flag as estimated (J) those positive results for which ICS recovery is between 121-150%; flag all sample results as estimated if ICS recovery falls within 50-79%; reject (red-line) those sample results for which ICS recovery is less than 50%; if ICS recovery is above 150%, reject positive results only (not flagged with a "U").			
A.1.8.6.3	Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)?	[•	
	ACTION: If no. flag as estimated (J) all samples for			

which AL, Ca, Fe, or Mg is higher than in ICS.

Form V A (Spiked sample Recovery - Pre-Digestion/Pre-Distallation)(Note: Not required for Ca, Mg, K, and Na (both matrices), Al, and Fe

STANDARD OPERATING PROCEDURE Page 12 of 30 Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2Appendix A.1: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) YES N/A A.1.8.7.1 Present and complete for: each 20 samples? each matrix type? each conc. range (i.e. low, med., high)? For both AA and ICP when both are used for same analyte? ACTION: If no for any of the above, flag as estimated (J) all positive data less than four times spiking level for which spiked sample was not analyzed. NOTE: If one spiked sample was analyzed for more than 20 samples, then first 20 samples analyzed do not have to be flagged as estimated (J). A.1.8.7.2 Was field blank used for spiked sample? If yes, was field blank described as such on Traffic Report? ACTION: If yes, flag all positive data less than 4 x spike added as estimated (J) for which field blank was used as spiked sample. A.1.8.7.3 Circle all values on Data Summary Sheet that are outside of control limits (75% to 125%). Are all recoveries within control limits? If no, is sample concentration greater than or equal to four times spike concentration? ACTION: If yes, disregard spike recoveries for analytes whose concentrations are greater than or equal to four times spike added. If no, circle those analytes on Form V for which sample concentration is less than four times the spike concentration. Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA?

If no, write in the contract problem/non compliance

section of "Data Assessment Narrative".

STANDARD OPERATING PROCEDURE Page 13 of 30 Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2 Appendix A.1: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) A.1.8.7.4 Aqueous YES N/A NO Are any spike recoveries: (a) less than 30%? (b) between 30-74%? (c) between 126-150%? (d) greater than 150%? If less than 30%, reject all associated aqueous ACTION: data; if between 30-74%, flag all associated aqueous data as estimated (J); if between 126-150%, flag as estimated (J) all associated aqueous data not flagged with a "U"; if greater than 150%, reject (red-line) all associated aqueous data not flagged with a "U". NOTE: If pre- digestion spike result is rejectable due to coefficient of correlation of MSA, analytical spike recovery, or duplicate injections criteria, disregard spike recovery on Form V. Flag the associated data as estimated(J). A.1.8.7.5 Soil/Sediment Are any spike recoveries: (a) less than 10%? (b) between 10-74%? (c) between 126-200%? (d) greater than 200%? If less than 10%, reject all associated data; if between 10-74%, flag all associated data as estimated; if between 126-200%, flag as estimated all associated data was not flagged with a "U"; if greater than 200%, reject all associated data not flagged with a "U". A.1.8.8 Form VI (Lab Duplicates) A.1.8.8.1 Present and complete for: each 20 samples? each matrix type?

each concentration range (i.e. low, med., high)?

	STANDARD OPERATING PROCEDURE	Page 1	4 of 3	0
Title:	Evaluation of Metals Data for the Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Date: Number: Revisio		
		YES	NO	N/.
	both AA and ICP when both are used for same analyte?	[]	<u>/</u>	
	ACTION: If no for any the above, flag as estimated (all data >CRDL for which duplicate sample wa not analyzed. Note: If one duplicate sample was analyzed for mor than 20 samples, then first 20 samples do no have to be flagged as estimated.	s e	,	
A.1.8.8.	2 Was field blank used for duplicate analysis?		[<u>\sqrt{1}</u>]	
	If yes, was field blank identified as such on - Traffic Report?		[]	<u>\\</u>
	ACTION: If yes, flag ail data >CRDL as estimated (J) for which field blank was used as duplicate.			
A.1.8.8.	3 Circle all values on Data Summary Sheet that are outsicontrol limits:	ie		
	Aqueous Samples (a) 20% RPD or (b)+ CRDL	•	•	
	Soil Samples (a) 35% RPD or (b)+ CRDL			
	Are all values within control limits?	[]	$\underline{\checkmark}$	
	If no, are all results outside the control limits flagged with an * on Form I's and VI?	[<u></u> 1		_
	ACTION: If no, write in the contract problems/non-compliance section of "Data Assessment Narrat	ive".		
	NOTE: 1. RPD is not calculable for an analyte of the sample - duplicate pair when both values are less than IDL. 2. If lab duplicate result is rejectable due to of correlation of MSA, analytical spike recove duplicate injections criteria, do not apply p	ery, or	t	

criteria. Flag the associated data as estimated.

A.1.8.8.4 Is any value for sample duplicate pair less than CRDL

ACTION: If yes, reject associated data.

and other value greater than or equal to 10 x CRDL?

Page 15 of 30

Title: Evaluation of Metals Data for the

control limits:

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

	<u> </u>											
		YES	NO	N/A								
A.1.8.8.5	Aqueous											
	Is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5 times CRDL?		[<u> y</u>]									
	Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5 times CRDL?		[]									
	ACTION: If yes, reject (red-line) all associated data.											
A.1.8.8.6	Soil/Sediment											
	Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL):	<u> </u>	[]									
	<u>></u> 100%?		[<u>\sigma_1</u>]									
_	Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL):											
	>CRDL?	_	[]									
	>2xCRDL?	<u> </u>	[]									
	ACTION: Flag the associated data as estimated if RPD > or Diff.>CRDL; reject data if RPD > 100% or Dif		•									
A.1.8.9	Field Duplicates											
A.1.8.9.1	Were field duplicates analyzed?	[]										
	ACTION: If yes, prepare a Form VI for each field duplicate pair, report concentrations of soils in ug/l on wet weight basis and calculate RPDs.											
	NOTE: 1. Do not calculate RPD when both values are less 2. Reject (red-line) all associated data only for duplicates.		•									
A.1.8.9.2	Circle all values on Form VI for field duplicates that	are outsi	de									

Soil Samples (a) 35% RPD or (b)+ CRDL

Aqueous Samples

(a) 20% RPD or

(b)+ CRDL

NLI 001 1253

Page 16 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

			YES	NO	N/A
	Are all values within contro	l limits?	[]		_
A.1.8.9.3	Is any value for sample dupl and other value greater than		_	[]	<u>\</u>
	ACTION: If yes, reject asso	ciated data.			
A.1.8.9.4	Aqueous				
	Is any RPD greater than 50% are both greater than or equ		[]	<u>~</u>	
	Is any difference between sa than CRDL where sample and/o 5 times CRDL?			[]	$\underline{\checkmark}$
	ACTION: If yes, reject (red	-line) all associated data.			
₩.1.8.9.5	Soil/Sediment				
	Is any RPD (where sample and greater than 5 times CRDL):	duplicate are both >50%?		[]	<u> </u>
		<u>></u> 100%?		. [<u> </u>	\checkmark
	Is any difference between sa (where sample and/or duplica				
		>CRDL?		[]	<u>/</u>
		>2xCRDL?		[]	<u>\</u>
	ACTION: Flag the associated Diff.>CRDL; reject	data as estimated if RPD>50 data if RPD>100% or Diff.>2			
A.1.8.10	Form VII (Laboratory Control required for aqueous Hg and		NL I	001 1:	254
A.1.8.10.1	Was one LCS prepared and ana	lyzed for: every 20 water samples?	[<u></u>		
		every 20 solid samples?	ι <u>√</u> j	_	
	both AA and ICP when both	are used for same analyte?	1/1		

Page 17 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2 Revision: 8

YES NO N/A

ACTION: If no for any of the above, prepare Telephone Record Log and contact laboratory for submittal of results of solid LCS. Flag as estimated(J)

all data for which LCS was not analyzed.

NOTE: If only one LCS was analyzed for more than 20 samples, then first 20 samples close to LCS do not have to be flagged as estimated.

A.1.8.10.2 Aqueous

Circle all LCS values outside of control limits(80 - 120% - except aqueous Ag and Sb).

Is any LCS recovery: less than 50%?

between 50% and 79%?

between 121% and 150%?

greater than 150%?

ACTION: Less than 50%, reject (red-line) all data; between 50% and 79%, flag all associated data as estimated (J); between 121% and 150%, flag all positive (not flagged with a "U") results as estimated; greater than 150%, reject all positive results.

A.1.8.10.3 Solid LCS

NOTE: 1. If IDL of an analyte is equal to or greater than True Value of LCS, disregard the following criteria.

- If "Found" value of LCS is rejectable due to duplicate injections or analytical spike recovery criteria, disregard LCS recovery; flag the associated data as estimated(J).
- a. If the Solid LCS recovery for any analyte falls outside EPA control limits, qualify all sample results >IDL as estimated (J).
- b. If the LCS results are higher than the control limits and the sample results < IDL, the data are acceptable.
- c. If the LCS results are lower than the control limits, qualify all sample results < IDL as estimated(UJ).

Page 18 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988
Number: HW-2

Revision: 8

•				
		Yes	NO	N/A
A.1.8.11	Form IX (ICP Serial Dilution) -			
A.1.8.11.1	Was Serial Dilution analysis performed for: each 20 samples?			
	each matrix type?	[<u>/</u>]		
	each concentration range (i.e. low, med.)?	[]		1/
	ACTION: If no for any of the above, flag all positive greater than or equal to 10xIDLs as estimated for which Serial Dilution Analysis was not pe and summarize the deficiency on the DPO report	(J) rformed,		
A.1.8.11.2	Was field blank(s) used for Serial Dilution Analysis?		[<u>√</u>]	_
·	If yes, was field blank described as such on Traffic Report?		[]	<u> </u>
	ACTION: If yes, flag all associated data \geq 10 x IDL as estimated (J).		·	
A.1.8.11.3	Circle all values on Data Summary Sheet that are ousid of control limit (± 10 %). Are all values within ± 10 %			
	Are results outside control limit flagged with an "E" on Form I's and Form IX?	[]		<u> </u>
	ACTION: If no, write in the contract problem/non-compl section of the Data Assessment Narrative".	iance	٠.	•
A.1.8.11.4	Are any % Diff. values : > 10% ?			-
. •	<u>></u> 100% ?			_
	ACTION: Flag as estimated (J) all associated sample r	esults		

ACTION: Flag as estimated (J) all associated sample results equal to or greater than 10xIDLs for which percent difference is greater than 10% but less than 100%. Reject (red-line) all associated sample results equal to or greater than 10xIDLs for which PD is greater than or equal to 100%.

Page 19 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

		YES	NO	N/A
A.1.8.12	Furnace Atomic Absorbtion (AA) QC Analysis			
A.1.8.12.1	Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed by GFAA?	[<u>√</u>]		
	ACTION: If no, reject the data on Form I's for which duplicate injections were not performed.			
A.1.8.12.2	Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or Coefficient of Variation (CV) for concentration greater than CRDL?	[]		
	Was a dilution analyzed for sample with post digestion spike recovery less than 40%?			
	ACTION: If no for any of the above, flag all the associated data as estimated (J).			
.1.8.12.3	Is *post digestion spike recovery less than 10% or greater than 150% for any result?		[]	
	ACTION: If yes, reject (red-line) the affected data if recovery is <10%; reject data not flagged with if spike recovery is >150%. NOTE: Reject the data only if the affected sample was not subsequently analyzed by Method of Standar Addition.	. "U" s		
		·		
A.1.8.13	Form VIII (Method of Standard Addition Results)		• .	
A.1.8.13.1	Present?	[<u>√</u>]		
	If no, is any Form I result coded with "S" or a "+"?		[]	
	ACTION: If yes, write request on Telephone Record Log contact laboratory for submittal of Form VIII.			
A.1.8.13.2	Is coefficient of correlation for MSA less than 0.990 fany sample?	or —	[
	ACTION: If yes, reject (red-line) affected data.			

^{*} Post digestion spike is not required on the pre-digestion spiked sample when pre-digestion spike recovery is within control limits of 75-125% or when SR>4xSA.

Page 20 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)

Date: Dec. 1988 Number: HW-2

Revision: 8

		YES	NO	<u>N/#</u>
A.1.8.13.3	Was *MSA required for any sample but not performed?	<u> </u>	[]	
	Is coefficient of correlation for MSA less than 0.995?		1_1	
	Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run?		[<u>V</u>]	
	ACTION: If yes for any of the above, flag all the associated data as estimated (J).		`	
A.1.8.13.4	Was proper quantitation procedure followed correctly as outlined in the SOW on page E-16 through E-17?	[<u>/</u>]		
	ACTION: If no, note exception under contract problem/non compliance of data assessment narrative, or prepare a seperate list.	-		
-				
A.1.8.14	Dissolved/Total or Inorganic/Total Analytes -			
A.1.8.14.1	Were any analyses performed for dissolved as well as total analytes on the same sample(s).		11/1	
	Were any analyses performed for inorganic as well as tota (organic + inorganic) analytes on the same sample(s)?	1	[]	<u>V</u>
	If yes, apply the following questions only if inorganic (or dissolved) results are (i) above CRDL, and (ii) greater than total constituents.			
A.1.8.14.2	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 10%?		[]	
A.1.8.14.3	Is the concentration of any dissolved (or inorganic) analyte greater than its total concentration by more than 50%?		[]	<u>/</u>

NOTE: Prepare a list comparing differences

when both are above CRDL.

between all dissolved (or inorganic) and total analytes. Compute the differences as a percent of the total analyte only

NLI 001 1258

Page 21 of 30

Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2Appendix A.1: Data Assessment - Contract Revision: 8 Compliance (Total Review - Inorganics) YES NO N/A ACTION: If more than 10%, flag both dissolved (or inorganic) and total values as estimated (J); if more than 50%, reject (red-line) the data for both valuse. A.1.8.15 Form I to IX A.1.8.15.1 Are all the Form I through Form IX labeled with: Laboratory name? Case number? EPA sample No.? SDG No.? Contract No.? Correct units? Matrix? ACTION: If no for any of the above, note under contract problem/non-compliance section of narrative. of the"Data Assessment Narrative". A.1.8.15.2 Do any computation/transcription errors exceed 10% of reported values on Forms I-IX for: (NOTE: Check all forms against raw data.) (a) all analytes analyzed by ICP? (b) all analytes analyzed by GFAA? (c) all analytes analyzed by AA Flame?

ACTION: If yes, prepare Telephone Log, contact laboratory for corrected data and correct errors with red pencil and initial.

(d) Mercury?

(e) Cyanide?

Title: Evaluation of Metals Data for the

ACTION:

Page 22 of 30

Date: Dec. 1988

	Contract Laboratory Program Appendix A.1: Data Assessment - Contract Compliance (Total Review - Inorganics)	Number: Revision:	HW-2 8]	
		YES	NO	N/A	
A.1.8.16	Form I (Field Blank) -				
	Circle all field blank values on Data Summary Sheet that are greater than 2xIDL.				
	Do concentrations of field blank(s) fall below two times IDLs for all parameters of associated aqueous and soil samples?	<u>[\sqrt{1}</u>			
-	If no, was field blank value already rejected due to other QC criteria?	[]		<u> </u>	
	ACTION: If no, reject (red line) all associated aqueous and soil/sediment data (except field blank) that has a concentration less than five times the field blank value not flagged with a "U" (less than).				
1.1.8.17	Form XI, XII, XIII (Quarterly Verification of Instrum Parameters).	mental			
A.1.8.17	1.1 Is quarterly verification report present for:		•		
	Instrument Detection Limits?	[<u>`_</u>]			
	ICP Interelement Correction Factors?				
	ICP Linear Ranges?	<u>_1</u>			
	ACTION: If no, contact DPO of the lab.				
A.1.8.17	7.2 Form XI (Instrument Detection Limits) - (Note: IDL in required for Cyanide.)	ls not			
	Are IDLs present for: all the analytes?	$ \underline{\checkmark} $			
	all the instruments used?	(<u>√</u> 1			
	For both AA and ICP when both are used for same analyte?	<u>(</u>			

If no for any of the above, prepare

Telephone Record Log and contact laboratory.

Page 24 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program
Appendix A.2: Data Assessment Narrative

Case#	Site	Matrix:	Soil			
Reviewe	r Lab		Water			
Contrac	tor		Other			
			•			
	·					
A.2.1	All data are of acceptable quality? Yes	No	्स्यू भेष्			
	If no, exceptions are noted below with reason(s) f rejection or qualification as estimated value (J).	or				
Av.	And the property of the Andrews Commence of the Commence of th	e de la companya de l				
· · ·						
	•					
) 						
	A British Barton of marginal of from more at the straight was a great from					
14						
1.9						
			-			
e e e e e e e e e e e e e e e e e e e			and the second s			
	material of the second of the					
•			****			

Page 25 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.2: Data Assessment Narrative

Date: Dec. 1988 Number: HW-2 Revision: 8

NLI 001 1262

			Datat	
ctor Reviewer:_	Signature		Date:	
	Signature		.	
MMB Reviewer:_			Date:	
	. 3			
		·		
				· · · · · · · · · · · · · · · · · · ·
	ą		:	77 -

.2 Contract Pr	oblems/Non-compliance			
				•
	<u> </u>		•	
. January of the second of the				

Page 26 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.3: Contract Non-Compliance

Reviewer's Initial

(SMO Report)

Date: Dec. 1988 Number: HW-2 Revision: 8

CONTRACT NON-COMPLIANCE (SMO REPORT)

Regional Review of Uncontrolled Hazardous Waste Site Contract Laboratory Data Package

		CASE NO.
inorganic d	oied (laboratory name) data package received at Region II mance data summarized. The data m	has been reviewed and the quality assurance eviewed included:
JMO Sample	No.:	
lonc. & Mat	rix:	
:hat associ	ated reports be provided by the c	quires that specific analytical work be done and contractor to the Regions, EMSL-LV, and SMO. The property of the communication of:
	Data CompletenessMatrix Spike ResultsCalibration Standards Result	 Duplicate Analysis Results Blank Analysis Results MSA Results
tems of no	on-compliance with the above contr	act are described below.
Comments:		
		
		
		•

Date

Page 27 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.4: Mailing List for Data Reviewers

Date: Dec. 1988 Number: HW-2

Revision: 8

DPO/MAILING LIST FOR DATA REVIEWERS

- USEPA Region I (ESD)
 60 Westview Street
 Lexington, MA 02173
 Deb Szaro
 (617) 861-4312
 CT, ME, MA, NH, RI, VT
- 3. USEPA Region III (CRL) 839 Bestgate Road Armapolis, MD 21401 Chuck Sands (301) 266-9180 DE, MD, PA, VA, WV, DC
- 5. USEPA Region V (ESD)
 536 South Clark Street
 Tenth Floor, CRL
 Chicago, IL 60605
 Pat Churilla
 312-353-9087
 IL, IN, MI, MN, CH, WI
- 7. USEPA Region VII Laboratory
 25 Funston Road
 Kansas City, KS 66115
 Debra Morey
 (913) 236-3881
 IO, KS, NB, MO
- 9. USFFA Region IX (ESD)
 QA Management Section
 215 Fremont Street
 San Francisco, CA 94105
 Kent Kitchingman
 (415) 974-0924
 AZ, CA, HI, NV, American Samoa,
 Guam Trust Territories of Pacific
 Islands, Wake Island
- 11. Sample Management Office Viar and Company P.O. BOX 818 Alexandria, VA 22313
- 13. Duane Geuder (OS-230) USEPA 401 "M" Street, S.W. Washington, DC 20460

- USEFA Region II (ESD)
 Woodbridge Avenue
 Edison, New Jersey 08837
 Lisa Gatton Vidulich
 (201) 321-6676
 NJ, NY, PR, VI
- 4. USEPA Region IV (ESD)
 Analytical Support Branch
 College Station Road
 Athens, GA 30613
 Tom Bernett, Jr.
 (404) 546-3112
 AL, FL, GA, KY, MS, NC, SC, TN
- 6. USEPA Region VI (ESD)
 Monterey Park Plaza, Bldg. C
 6608 Hornwood Drive
 Houston, TX 77074
 David Stockton
 (713) 953-3425
 AL, LA, NM, TX, OK
- 8. USEPA Region VIII Laboratory BCK 25366 Denver Federal Center Lakewood, CO 80225 Eva Hoffman (303) 236-7371 CO, ND, SD, UT, WY, MT
- 10. USEFA Region X Laboratory P.O. BCK 549 Manchester, WA 98353 Gerald Muth (206) 442-0370 AK, ID, CR, WA
- 12. Edward Kantor USEPA EMSL-LV 944 E. Harmon Avenue BOX 93478 Las Vegas, NV 89119

Page 28 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.5: Summary of Inorganics

Quality Control Data

					51	MMAR	T 01	INOP	GANI	cs q	UALI	TY C	ONTR	OL D	ATA								
LABO	RATORY	/:			CAS	SE NO	·			sow	ио.				Sampi	E TI	PE:		-				
SITI	/STUDI	DE:	SCRIPTI	ON:						SAM	PLE	nos :	 .					<u> </u>					
FIE	D DUP.	#1	5:					LB DUI	. #'	#'S: MATRIX SPIKE #:						Pield Blank							
	Detect	ion	1	Calib. Ver. ZR Continued Init 1 2 3			CIDL	Std	Ca	III Calibration			P B	ICP	V V		Lab	VII	Ser	H			
Para-	Linit		Field	—	ZR Co			Ver.	ZR		Blan	ks	-4	무늬	Z	R	t p	Dup	LCS	D11	•		
	CRDL	IDL	DIENK	Ini	: 1	2	3	Init	Fin	Init	1_	2	3	PN	Init	Pin	x k	RPD	Z R	Z D	<u>h</u>		
	200											i.											
Sb	60										•				1								
Ås_	10																						
Ba	200	-																					
Be	5																						
Cd	5																						
Ca.	5000				_			<u> </u>									<u> </u>						
Cr	10	_	<u> </u>	↓_																	_		
Co	50		ļ					<u> </u>							<u> </u>	<u> </u>		_					
Cu	25		ļ	<u> </u>		igspace		ļ								ļ		<u> </u>			_		
7e	100		ļ		_			<u> </u>	ļ	<u> </u>						<u> </u>	lacksquare	<u> </u>	<u> </u>		_		
Pb	5	_	<u> </u>	1		<u> </u>							ļ		ļ	_	_	_		<u> </u>	_		
Mg	5000		 	╀	_	<u> </u>	_	ļ								<u> </u>	_	↓_	_	<u> </u>	_		
Mn	15	L	<u> </u>				_		<u> </u>	<u> </u>	_	<u> </u>				_	_	↓_	↓	↓	<u> </u>		
Hg	0.2	ļ .	ļ	╀	_	 		<u> </u>		<u> </u>	<u> </u>					—	_	-	—	—	<u> </u>		
N1	40	_	ļ	<u> </u>	<u> </u>		_	ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>	_		_	_	<u> </u>	<u> </u>	 	<u> </u>		
R	5000		ļ	+-	_	╀		<u> </u>	ļ	<u> </u>	_	ļ	_		-	╄	<u> </u>	╀	↓_	↓	 		
Se	5	ļ		4	-	_	_	<u> </u>	<u> </u>	ļ	<u> </u>				<u> </u>	<u> </u>	<u> </u>	┷	↓_	↓	_		
AE_	10	_	ļ	┿	-	-	-		╀-	<u> </u>	<u> </u>	ļ	<u> </u>	_	-	╀-	ļ	 	┼	↓_	<u> </u>		
Na	5000	_	 		_	1	_		1_				-		<u> </u>	 	+	-	-	↓	<u> </u>		
71	10	<u> </u>				1_		 	1_	_	_	_		<u> </u>	 	_	_	_	_	↓	├_		
_₩	50	_	1	 	<u> </u>	<u> </u>	\perp	_	ļ.,	 			_			_	_	1_	<u> </u>	↓	ـــ		
Zn	20	<u> </u>	1	+-	_							<u> </u>	_	_		_	_	 	ļ	 	<u> </u>		
CM	10	1	1	ł	1	1	1		1	1	1	i i	1	1		ł	1	1	I	ı	ľ		

Page 29 of 30

Title: Evaluation of Metals Data for the

Contract Laboratory Program

Appendix A.6: CLP Data Assessment

sterisk (*) Indicates additional exceedances of review criteria.

Summary Form (Inorganics)

			<u>CL</u>	P DATA	ASSESSME	NT SUMMARY	y poi	RM (INOI	RGANICS)					
pe of Rev	iev:					Date	:					Case	. /:	
								Lab I	Nese:					
:viewer's	Initials	:		د در بر ند				Ne	umber of Sa	umple	18:			
		•	Anal	rtes Ro	ejected D	ae to Exc	<u>eedir</u>	ig Revio	ew Criteria	<u>1:*</u>				
	Holding Times	Calibration	Prep Blank	Field Blank	Inter- ferences	Spike Recovery	Dup!	icates Field	Detection Limits	LCS	Serial Dilution	MSA	Total Analytes	Rejection
·/														
ae AA												<u> </u> '		
mmace M			<u> </u>	<u> </u>					<u></u> '	<u> </u>		<u> </u>		
:	<u> </u>		<u> </u>				<u> </u>	<u> </u>				'		
intal	<u> </u>	 	<u> </u>	 '	<u></u>			<u>'</u>	<u> </u>	<u></u>		<u> </u>	<u>.</u>	
) ir	<u></u>	<u> </u>		<u></u>	<u> </u>	<u></u>			<u> </u>	<u> </u>	<u></u>	<u> </u>		
<u> </u>		Analyte	es Pla	gged at	Estimate	ed (J) Du	e to	Exceeds	ing Criter:	<u>La F</u>	or:*			
CP														
. se AA														
Purnace AA	<u> </u>													
i ury														
otal			<u> </u>	ļ					<u> </u>		<u> </u>			

Title: Evaluation of Metals Data for the Date: Dec. 1988 Contract Laboratory Program Number: HW-2 Appendix A.7: CLP Data Assessment Checklist Revision: 8 Inorganic Analysis INORGANIC REGIONAL DATA ASSESSMENT Region SITE LABORATORY NO. OF SAMPLES/ MATRIX SDG#____ REVIEWER (IF NOT ESD) SOW# REVIEWER'S NAME DPO: ACTION FYI COMPLETION DATE DATA ASSESSMENT SUMMARY AA ICP Hg CYANIDE HOLDING TIMES 1. 2. CALIBRATIONS BLANKS 3. ICS 4. 5. LCS DUPLICATE ANALYSIS 6. MATRIX SPIKE 7. 3. 9. SERIAL DILUTION SAMPLE VERIFICATION 10. 11. OTHER QC 12. OVERALL ASSESSMENT 0 = Data has no problems/or qualified due to minor problems. M = Data qualified due to major problems. Z = Data unacceptable. X = Problems, but do not affect data. ACTION ITEMS: AREAS OF CONCERN:

NOTABLE PERFORMANCE: